Evolutionary Dynamics in the Long-Term Stationary Phase Srihari Ganesh Cluzel Lab

Phases of the Bacterial Life Cycle

S.E. Finkel, Nature Reviews, 2006

Phases of the Bacterial Life Cycle

S.E. Finkel, Nature Reviews, 2006

Phases of the Bacterial Life Cycle

S.E. Finkel, Nature Reviews, 2006

Defining long-term stationary phase (LTSP)

• A state in which bacteria can survive for years without an external food source

S.E. Finkel, Nature Reviews, 2006

Evolutionary dynamics in LTSP

- Population in long-term stationary phase (LTSP) is continually evolving
- Interested in modeling the population dynamics of these mutants

How does the protein burden affect population dynamics?

- Cells often make nonessential proteins
 - Pro: provides more nutrients for other cells to recycle after death
 - Con: is more of a burden through energy usage
- We want to know how the extra burden impacts dynamics in the long-term stationary phase
 - Intuition says that a higher burden should still be unfavorable

Experimental Design

- Varied levels of burden, from low to high, in E. coli strains
 - Track burden through fluorescence level
- Expect selection for random mutations that reduce burden

- Flask started with only a strain of **high** burden (**high** fluorescence)
- Mutant of parent strain with lower protein burden (no fluorescence) appeared and took over

- Flask started with only a strain of **high** burden (**high** fluorescence)
- Mutant of parent strain with lower protein burden (no fluorescence) appeared and took over

- Flask started with only a strain of **high** burden (**high** fluorescence)
- Mutant of parent strain with lower protein burden (no fluorescence) appeared and took over

- Flask started with only a strain of **high** burden (**high** fluorescence)
- Mutant of parent strain with lower protein burden (no fluorescence) appeared and took over

Modeling Competitive Exclusion

• With a **constant** protein burden, the strain with the lowest burden always takes over in simulations

• Strains with varying levels of burden can coexist

Time (days)

• Strains with varying levels of burden can coexist

• Strains with varying levels of burden can coexist

Time (days)

- Strains with varying levels of burden can coexist
- How do we model coexistence?

Time (days)

A natural example of protein burden: flagella

• Flagella are massive burdens (20k-30k subunits) –

A natural example of protein burden: flagella

• Flagella are massive burdens (20k-30k subunits) –

A natural example of protein burden: flagella

• Flagella are massive burdens (20k-30k subunits) –

The lowest burden doesn't always take over

- Making flagella is a massive burden, yet they can still coexist with, or even outcompete, more efficient strains
 - Wild-type bacteria pulsate flagellum production (through varying promoter strength) as a survival strategy

Simplification: Oscillating the protein burden

Modeling Coexistence

• An **oscillating** protein burden can be favorable over a constant burden of lower average magnitude

Future Directions

- Investigate the favorability of oscillating protein burden
 - Match experimentally observed pulsating dynamics
- Fit model to population data in the competitive exclusion case

Acknowledgements

Professor Philippe Cluzel

Dr. Alina Guse

Lab Members: Mayra García-Alcalá Dr. Kritika Gupta Dr. Bin Shao