Real-Time Dynamic Programming Applied to De Novo Genome Assembly

Srihari Ganesh !

Abstract

The DNA fragment assembly problem is an NP-
complete problem for which solutions are re-
quired in every field of biology. The develop-
ment of assemblers is an active area of research.
Exploratory work has previously been done to
attempt to apply reinforcement learning to the
fragment assembly problem through Q-learning
on an episodic Markov Decision Process (MDP),
though issues with scalability were noted. We
build upon this work by applying the Real-Time
Dynamic Programming (RTDP) algorithm and re-
formulating the MDP. Simulated results show that
RTDP is an improvement over Q-learning, though
the MDP formulation has ambiguous results. The
experiments also re-emphasize the concerns with
using MDP approaches in real-world applications.

1. Introduction

DNA sequencing — finding the order in which the nu-
cleotide bases (each of which is represented by one of the
symbols A, C, G, T) that make up the sequence appear in
DNA — is vital to biological research and nearly every
possible application in medicine and biotechnology. How-
ever, current biological sequencing technology does not
have the ability to read off entire DNA strands (which can
be hundreds of millions of bases). Instead, millions of small
fragments (called reads) can be sequenced; these fragments
are typically hundreds or thousands of bases long. The
reads must then be computationally assembled based on
overlaps between reads to recover the true DNA sequences
(the genome).

This is the referred to as the fragment assembly problem, and
is NP-complete. In addition to the challenges presented by
the sheer magnitude of reads and sequence length, biology
and experimental techniques introduce other complicating
factors. For one, DNA is made up of complementary strands
in opposite orientations, so we do not always know the
orientation of a read. Other problems include errors in

"Harvard College, Harvard University, Cambridge, MA 02138.

Proceedings of the 2022 STAT 234 Project, Cambridge, Mas-
sachusetts, USA, 2022.

reads, mutations in the sequence, and repeated sequences
that occur in multiple locations in the genome.

There are two main classes of DNA fragment assembly
problem. In reference-based problems, one uses previously
obtained sequences (which are expected to be similar to
the sequence being analyzed) to align reads and guide re-
construction. In the de novo case, no such reference exists:
instead, the genome must reconstructed together entirely
from scratch.

1.1. Contributions

This paper explores potential improvements to reinforce-
ment learning (RL) approaches to the de novo fragment as-
sembly problem, specifically those using a Markov Decision
Process (MDP) model. As will be discussed in Section 2.4,
existing work in this area has only applied variants of the
e-greedy Q-learning (¢QL) algorithm (Bocicor et al., 2011;
Czibula et al., 2013; Padovani et al., 2021; Xavier et al.,
2019). We implement a heuristic search algorithm, Real-
Time Dynamic Programming (RTDP), with several simple
choices of heuristic function (Barto et al., 1995). On small
test sets, we show that RTDP dominates eQL. However, con-
cerns with the scalability of the approach (in run-time and
memory) reinforce the conclusion that an MDP approach
is likely inviable for real-world applications (Xavier et al.,
2019).

2. Related Work

Given the complexity of the fragment assembly problem
and the amount of reads involved, finding an exact solu-
tion is intractable. Instead, heuristic and approximating
methods must be used. Given the possibility for errors and
discontinuous DNA sequences, any real-world de novo ap-
proach attempts to assemble the reads into as many large
supersequences (contigs) as possible.

2.1. De Bruijn Graphs

Currently, the most popular methods for de novo assembly
utilize De Bruijn graphs (Pevzner et al., 2001). For each
read, this approach finds every subsequence of some pre-
specified length k and creates a vertex for that k-mer. The
k-mers with significant overlap are connected with edges.

RTDP for De Novo Genome Assembly

[
(1] 2] 3] (4]

PM(Fy, Fy) + PM(Fy, Fy) +0.1

3, 4]

M(Fy, F) + 0.1
PM(Fy, Fy) + 0.1 (Fi, F2)

3,4, 1] (3.4,2]
PM(Fy, Fy) + 1.1

3,4,1,2

Figure 1. MDP formulation for the fragment assembly problem in the literature (list representation), using an example genome with four

reads [F1, Fa, F5, F4] (Bocicor et al., 2011; Padovani et al., 2021).

Then, a solution (solved genome) is given by searching for
a Eulerian path through the graph.

2.2. Genetic Algorithms

Genetic algorithms (GA) have also been explored for frag-
ment assembly (Kikuchi & Chakraborty, 2012; Oliviera
et al., 2017). These approaches are inspired by natural se-
lection, where generations of solutions are created, with
children formed by combining and mutating parents. In
each generation, the most fit solutions are selected to re-
produce for the next generation. GA builds on the initial
greedy approaches in DNA fragment assembly, addressing
the issue that greedy algorithms would work towards local
maxima, and not the global extremum. These approaches
still struggle on large read sets in comparison to De Bruijn
graphs, but still may have some utility in smaller genomes.

2.3. Scoring Functions

For GA methods (or generally most iterative algorithms),
one must score the quality of a solution without actually
knowing the solution beforehand. To define such scoring
methods, let one must first define the structure of a solution.
As an output, a solution is given as a permutation of reads:
that is, given reads [F7y, F, ..., F},], a solution is some per-
mutation of the fragments [F, , Fl,, ..., Fi,]. One popular
class of scoring systems uses pairwise overlaps: for some
overlap measure P M, the score S of a permutation is

n—1
S([Fay, Fay, s Fa,]) = > PM(Fa,, Fa,y,). (D)
=1

Further on in the paper, we will overload PM to such that
S([Fays Fagy-s Fa,]) = PM([Fu,, Fa,, ..., Fa,]). Pos-
sible choices for the scoring system include the Smith-
Waterman algorithm and the Levenschtein distance (Oliviera
et al., 2017; Smith & Waterman, 1981). In an idealized,
error-free problem, a simple count of the maximum number
of overlapping bases between the tail of the first read and
the head of the second can be used.

2.4. Reinforcement Learning

Reinforcement learning (RL) methods have not been widely
explored in the DNA fragment assembly, and for good rea-
son — the goal of the fragment assembly problem is opti-
mization (finding the true arrangement of fragments), while
a typical RL problem involves some trade-off between ex-
ploration and exploitation. Ant colony optimization for
fragment assembly was introduced but not explored further
(Wetcharaporn et al., 2006).

Formulation of the fragment assembly problem as an
episodic Markov Decision Process (MDP) has been briefly
explored, and will be expanded upon in this paper (Bo-
cicor et al., 2011; Czibula et al., 2013; Padovani et al.,
2021; Xavier et al., 2019). However, the existing litera-
ture is very limited and serves as initial exploration: only
e-greedy Q-learning has been studied, with the intention
of improving accuracy with more thorough searching. A
hybrid Q-learning/GA was the only other method attempted.
In addition, testing has only been done on small, simulated
genomes and read sets (orders of magnitude smaller than
true data), with error-free, correctly-oriented reads.

RTDP for De Novo Genome Assembly

An existing GA method was shown to vastly outperform
the e-greedy Q-learning approaches (including the hybrid
method) previously proposed, which led to the conclu-
sion that an MDP formulation was unlikely to be the basis
of a tractable, real-world approach (Oliviera et al., 2017;
Padovani et al., 2021). We will address this thought briefly
in the conclusion (Section 6.4); however, this paper will aim
to introduce more appropriate MDP approaches in order to
make any comparisons more legitimate.

3. MDP Formulation

We will now define the parameters of the episodic Markov
Decision Process (MDP) as established in previous works
(Bocicor et al., 2011; Padovani et al., 2021). We will first
introduce the MDP verbally, then formally notate it. Figure
1 is a graphical representation of the MDP formulation for a
sample genome with only four reads.

The MDP formulation supposes that we are given n cor-
rectly oriented, error-free reads, and that we are trying to
find the optimal permutation of these reads (i.e. find the or-
dering of the reads that gives the true genome when aligned).
At each time-step, we take an action, which is one of the
n reads. The state is used for book-keeping: it is a list of
actions that we have already taken. With that state represen-
tation, we start with the empty list [|, and append each action
taken to the list, which clearly means that the transitions are
known and deterministic. Terminal states occur when all
reads have been used once, and to form valid states, no read
is allowed to repeat — thus, episodes must strictly consist
of a permutation of the action space. Rewards are linear
functions of the pairwise metrics as discussed in Section 2.3:
for example, if the first two actions taken are Fy, F, then
the reward for the second action is related to PM (Fy, Fy).

3.1. Formal Definition

Let us now explicitly define the structure of the MDP given
n correctly-oriented, error-free reads:

 State space: permutations of the reads of up to length
n, represented as lists.

— Initial state: the empty list, [].

— Terminal states: lists of length n, where the only
reachable states are (non-repeating) permutations
of the reads.

* Action space: any of the n actions not in the current
state

— Deterministic transitions: define the function 7’
as the deterministic transition function, returning
the next state given the current state s and action

taken a. Then
T(s,a) = s+ [al, (2)

where the + sign indicates the appending of a to
the list s.

* Reward function: given a pairwise overlap function
PM,

0.1 s=1]
PM(s[-1],a) +1.1 sisterminal
PM(s[—1],a) + 0.1 otherwise,

3)
with s[—1] representing the last element in s (and thus
the last action taken). In the prior RL works, the Smith-
Waterman algorithm and a simple overlap measure-
ment have both been used. Since we are assuming
that we have error-free reads, we use the normalized
version of the latter and let PM explicitly refer to this
measurement from here on. If we let tail(x,) refer to
the last ¢ bases in sequence x and let head(z, i) refer
the the first ¢, then we can define the simple overlap
function.

R(s,a) =

Definition 3.1. Simple overlap function.

PM (zx,y) o< maxsuch that tail(x,i) = head(y, 1)

3.2. Important Specifics of the MDP Formulation

We will now emphasize some particularities about this for-
mulation of the DNA fragment assembly problem, espe-
cially compared to typical RL problems involving MDPs.

* Goal: maximizing the sum of undiscounted rewards
in any single episode encountered, which translates
to visiting the optimal terminal state at some point
(since this corresponds to an exact ordered list of ac-
tions). This is an optimization problem, which deviates
from the common RL goal of maximizing the cumu-
lative reward across all episodes (and the ubiquitous
exploration-exploitation trade-off that comes with it).
With the optimization goal, visiting the optimal termi-
nal state once is always more desired than visiting a
near-optimal state many times without ever reaching
the optimum.

* One-off optimization: The ordering learned for one
set of reads cannot be used to learn how to order other
sets of reads. Each instance of the problem (set of
reads) only pertains to itself and its own MDP.

¢ Fully known and deterministic MDP: the states, ac-
tions, and reward function are all known, deterministic,
and observable. There is no randomness and no con-
straints on observability.

RTDP for De Novo Genome Assembly

Algorithm 1 RTDP

Input: fragments [F}, Fb, ..., F,;], updatable heuristic
H, reward function R, transition function 7', Bellman
operator B
repeat
Shistory — ()
s =]
while s is not terminal do
Shistory 'append(s)
a = argmax, ¢ [R(s,a’) + H(T(s,a’))]
s=T(s,a)
end while
for " in sp;story[:: —1] (in reverse) do
H(s") = BH(s)
end for
until stopping criterion (# of episodes)

» Massive state space: The size of the state space is

z”: (:L)z' ~ n! (e — nil) = Q(n!)

=0

4. Proposed Improvements

4.1. Real-Time Dynamic Programming

Definition 4.1. Bellman update of state s, where H is an
optimistic (upper bound) heuristic function for the value of
the state, while B is the Bellman operator which

BH(s) = 1{1113;([1%(5, a)+ H(T(s,a))]

As previously noted, e-greedy Q-learning was the only RL
approach tested in the literature. However, Q-learning strug-
gles to propogate state-action values through the state space,
which can be problematic given that one of the main chal-
lenges of the DNA fragment assembly problem is the size
of the state space. Additionally, Q-learning is designed to
address the exploration-exploitation trade-off in classical
RL problems, but since there is no such trade-off involved
here, it is ill-suited for the problem. Instead, we can im-
plement an algorithm from the literature which (in the best
case) has the ability to converge without visiting the entire
state space, while also aiming for optimization: real-time
dynamic programming (RTDP) (Barto et al., 1995).

RTDP is a heuristic search, where an upper bound of the
state values is maintained. At each step, actions are selected
greedily, the values of the visited states in an episode are
backed up in reverse after the episode using the Bellman
operator (see Algorithm 1, Definition 4.1). This backing up
allows the upper bounds to be fully updated to match our
knowledge during each episode, instead of requiring multi-
ple visits and incremental updates like Q-learning. RTDP

also avoids unnecessary exploitation - a terminal state s is
only revisited if it is known to be the best.

4.1.1. CHOICE OF RTDP HEURISTIC

Another advantage of RTDP is that it allows us to apply
prior knowledge to our search through the heuristic. How-
ever, unlike search problems in Euclidean space, there is no
obvious heuristic for state values in the DNA fragment as-
sembly problem. As a preliminary study, we propose some
simple heuristic functions, with the acknowledgement that
these are likely far from optimal and can likely be improved
given domain knowledge.

1. Degenerate heuristic: based strictly on the number of
actions that have been taken, with no consideration for
which actions. This is completely uninformative and is
meant to serve as the baseline/control.

2. Naive maximizing heuristic: at the beginning of the
algorithm, the maximum overlap that each read has
with any other read is calculated. The heuristic of a
state is based on the sum of these maximum overlaps
of the remaining possible actions (in addition to the
last action taken so far).

3. Informed maximizing heuristic: at each step in an
episode, the maximum overlap that each of the remain-
ing possible actions has with the rest of the remaining
possible actions is calculated. The heuristic of a state
is based on the sum of these maximum overlaps of the
remaining possible actions remaining (in addition to
the last action taken so far)

The heuristics are listed in increasing order of complexity
and information, which comes with the trade-off that greater
run-time and memory are required to calculate and store
more complicated heuristics.

4.2. Tuple State Representation

The existing state representation in the MDP — which we
will refer to as the list representation — makes the MDP
a tree, since each state can only be reached through the
exact order of actions that the state dictates. Intuitively, this
seems to be wasteful, since the agent would be unable to
re-use learning about suffixes. For example, in an environ-
ment with 5 reads (£} through F}), suppose that the agent
took actions in the order Fjs, Fyy, F in one episode, and
Fy, F5, F in a later one. From the prior episode, the agent
has already learned something about the value of taking the
remaining available actions, F> and F5. However, since
they took different paths to get there, they cannot use that
knowledge.

To address this, we propose a state representation using tu-

RTDP for De Novo Genome Assembly

({}, null)

0.1

PM(Fs, Fy) +0

({3}, 1)

M(F), Fy) +0.1
PM(F,, F,) +0.1

({1, 3},

2)

({1, 3},4)

PM(Fy, F,) +0.1

({3}, 2)

PM(Fy, F) + T

0.1

M(Fy, Fy) + 0.1
PM(F,, Fy) + 0.1

({3.4}.1) (43,4}, 2)

PM(Fy, F3)+ 1.1

({1,3,4},2)

Figure 2. Proposed re-formulation of the fragment assembly MDP with a tuple state representation.

ples, which we will refer to as the tuple representation for
reasons soon to be clear. In this tuple, the first entry is a set
of all previously taken actions, while the second entry is the
latest action taken. For example, the lists [F3, Fy, F, Fy)
and [Fy, F5, Fy, F»] can both be represented in the tuple
representation by ({1, F3, F4}, F>). We propose that this
representation should allow for the re-use of learning about
suffixes, which would ideally improve the efficiency of learn-
ing.

5. Simulated Experiments

Experiments were run to evaluate the quality of the proposed
improvements. The testbeds were the five largest simulated
microgenomes used in prior MDP genome-assembly lit-
erature (with error-free, correctly-oriented reads), whose
specifications are listed in Table 1 (Padovani et al., 2021).
Four algorithms were tested, with the acronyms that will be
used to refer to them: e-greedy Q-learning (¢QL), with the
same hyperparameters used in prior literature, degenerate
heuristic RTDP (dRTDP), naive maximizing heuristic RTDP
(nmRTDP), and informed maximizing heuristic RTDP (im-
RTDP) (Padovani et al., 2021). Two MDP formulations
were tested: the list representation and the proposed tuple
representation. Each combination of algorithm and MDP
formulation was tested on each of the five testbeds and aver-
aged across three trials on each testbed. Trials were intended
to be thirty minutes long, but the episode occurring at the
thirty minute mark was allowed to complete. For these ex-
periments we also define relative PM, which is the ratio of
a solution’s PM to that the PM of the true sequence.

The genetic algorithm GAVGA was used for comparison in
prior RL works, where it was shown to dominate e-greedy

Table 1. Testbed Specifications (Padovani et al., 2021). All
testbeds were simulated with correctly-oriented error-free reads,
each of which are 75 bases long. Testbeds will be referred to by
their IDs.

TESTBED ID GENOME LENGTH (BASES) # OF READS
381.20.75 381 20
5673075 567 30
7264075 726 40
930.50_75 930 50
4224.230_75 4224 230

Q-learning (Oliviera et al., 2017; Padovani et al., 2021).
Use of GAVGA was attempted to serve as a benchmark
for this paper; however, for unclear reasons (though likely
a combination of our error and improper documentation
for user parameters), the results of Padovani et al. were
unable to be replicated. Instead, GAVGA sometimes gave
poorer results than previously documented, and was often
unable to consolidate the genome into one contig. Since
the performance of GAVGA was worse than previously
reported, rigorous comparisons will not be made. However,
we will briefly reference anecdotal observations from the
failed trials in the conclusion 6.4.

6. Results and Discussion
6.1. RTDP Dominates Q-Learning in Less Episodes

RTDP (all heuristics) consistently dominated Q-learning on
all microgenomes tested. RTDP was both faster and more
accurate: a representative average trace is shown in Figure

RTDP for De Novo Genome Assembly

10
0.8
0.6

M/f-’_’i

0.2

Greatest Relative PM Visited Thus Far

o 5 10 15 20 25 30
Time Elapsed (minutes)

Figure 3. Best relative PM visited by the four algorithms on the
list representation of 930_50_75 over time. Traces represent aver-
ages across three trials for eQL (blue), dRTDP (orange), nmRTDP
(green), and imRTDP (red). The RTDP traces are visually indistin-
guishable due to their rapid success in comparison to Q-learning
on the testbeds.

Table 2. Average Solution PM Achieved on List Representation.
Best relative PM achieved by each of the algorithms on each
testbed using the list representation, averaged across three trials.

TESTBED eQL DRTDP NMRTDP IMRTDP
381.20-75 0.793 1.0 1.0 1.0
5673075 0.696 1.0 1.0 1.0
726-40_75 0.568 1.0 1.0 1.0
9305075 0.500 1.0 1.0 1.0
422423075 0.171 0.981 0.983 0.974

3, while average solution PMs for all testbeds with the list
representation are displayed in Table 2. As shown in Figure
4, RTDP runs far less episodes than Q-learning, but the time
taken to calculate the heuristics appeared to pay dividends
in rapid and reliable solution quality.

However, one should note from Figure 3 that these solutions
are found in an extremely low number of episodes. This
likely stems from the nature of the testbeds — as idealized
microgenomes, there is a high degree of overlap, and thus
greedy actions may be highly rewarded. Thus, on top of the
other issues with using simulated data, these results should
be taken with reservations and verified on more difficult
datasets.

6.2. RTDP Heuristics Only Differ in Run-Time

As noted in Figure 3, the choice of heuristic function af-
fected the number of episodes which can be run in a set time
span: namely, imRTDP took significantly more time than
the other two heuristics. However, with read set sizes, this

100

10°

10

10°

Number of Episodes

10¢

10!

50 100 150 200
Read Set Size

Figure 4. Number of Episodes in 30 minutes as a function of read
size. Lines represent averages across three trials for eQL (blue),
dRTDP (orange), nmRTDP (green), and imRTDP (red).

small there does not appear to be a significant difference
in the number of episodes required for each of the RTDP
algorithms to visit the optimal PM for the first time, as can
be seen in Figure 5. This implies that the seemingly more
informative heuristics are not actually contributing anything
to the efficiency of the searching.

Such an effect could stem from the fact that even the more
informative heuristics do not actually differentiate between
the available actions at a specific state. Suppose we are in
state s. Then every possible next state s’ (those which can
be visited with some valid action a) still has the same set
of actions that are considered by each heuristic. Thus, the
heuristics can only contribute multiple steps down the line,
which blocks information from passing through without a
look-ahead algorithm.

Given that intuition, it seems unreasonable to seriously con-
sider the more complicated maximizing heuristics, nmRTDP
and imRTDP, with no tangible performance bonuses. This
is especially important since heuristic calculations take at
least quadratic time, which would scale very poorly to read
set sizes in the millions.

6.3. Tuple Representation Improves c-Greedy
Q-Learning, But Has No Notable Effect on RTDP

The implementation of the tuple representation improved the
quality of the best state that Q-learning visits on all testbeds
(over the list representation), as can be seen in Table 3. The
trace for the testbed in which the list representation came
closest, 726_50_75, is shown in Figure 6. These results
provide some support for the initial argument for the tuple
representation: the Q-values could be re-used, making the
learning of suffixes of states more useful than it would have

RTDP for De Novo Genome Assembly

25

20

15

10

Mumber of Episodes to Reach Optimal PM

20 s 0 s 40 45 50
Read Set Size

Figure 5. Number of episodes for each RTDP implementation to

reach the optimal PM as a function of the size of the read set.

4224 230_75 is excluded since none of the algorithms reached
the optimal PM. Traces represent averages across three trials for
dRTDP (orange), nmRTDP (green), and imRTDP (red).

Table 3. Average Solution PM Achieved by e-Greedy Q-Learning
with respect to State Representation. Solution PMs are averaged
over three trials.

TESTBED LisT TUPLE
3812075 0.793 0.895
567-30_75 0.696 0.744
726.40_75 0.568 0.601
930.50_75 0.500 0.530
422423075 0.171 0.176

been in a tree.

However, no such consistent difference was brought about
by the change in state representation when running any of
the RTDP implementations. Several possible explanations
exist. For one, RTDP explores the state space thoroughly,
meaning that the states it visits may have a minimal amount
of shared subsequences, especially in comparison to the
amount of repetition that is involved in e-greedy Q-learning.
Additionally, the nature in which updates occur in RTDP
could also play a factor: only the visited states in each
episode are updated, so in a tuple representation, states
whose Bellman-updated values have theoretically changed
may not be getting updated to reflect those changes, thus
nullifying a possible improvement that the tuple representa-
tion may have been able to offer. In a way, this update rule
may still be mimicking the behavior of a tree, like in the list
representation.

0.6 F— =

0.5

0.4

0.3

0z

01

Greatest Relative PM Visited Thus Far

o 5 10 15 20 25 30
Time Elapsed (minutes)

Figure 6. Best relative PM visited by Q-Learning using the list
representation (solid) and the tuple representation (dashed) on the
726.40_75 testbed over time. Traces represent averages across
three trials. The testbed was chosen since it showed the instance in
which the list representation was the closest to defeating the tuple
representation.

6.4. Conclusion

To summarize, RTDP outperformed Q-learning in both
speed and accuracy on all testbeds used. Of the three tested,
the choice of heuristic in RTDP did not make a significant
difference when measuring speed by the number of episodes,
but the run-time to calculate heuristics led to the most com-
plicated heuristic, imRTDP, being less favorable. Addition-
ally, while the tuple representation was more favorable for
Q-learning, no notable difference was observed in the per-
formance of any form of RTDP across state representations
on any of the given testbeds.

Given that the attempted choices heuristic did not actively
improve learning — as evidenced by the degenerate heuris-
tic keeping pace with the more intelligently designed ver-
sions — domain knowledge may unlock performance gains
through an improved heuristic. However, the scalability of
any such heuristic remains in question, since heuristics may
have to sweep through all of the reads multiple times.

Scalability concerns naturally arise given the testbeds used,
as well. As noted in the introduction (Section 1), the size
of true biological genomes and read sets are orders of mag-
nitude larger than the testbeds used here. It is also worth
knowing that the reads were error-free, when this is a large
obstacle in real-world science. However, in this MDP ap-
proach, the overlap measure P can be defined without
affecting the formulation of the problem; thus, any results
about algorithms and state representations are still fairly
general with respect to the PM function.

Another issue arises from the fact that the reads are ideal-

RTDP for De Novo Genome Assembly

ized in an additional way: they are spread relatively evenly
across the genome, with high amounts of overlap with their
neighbors. This could serve as another explanation as to
why RTDP perhaps performs unrealistically well on these
testbeds — greedy actions may quite often be optimal. Be-
cause of this, it would still be useful to continue explor-
ing other algorithms. RTDP is designed to be robust in
stochastic and unknown environments, so finding algorithms
that can take better advantage of fully known, deterministic
MDPs — perhaps from the operations research literature —
could also be a future direction of research if one wished to
continue with the MDP formulation of fragment assembly.

Obviously, comparisons to GAVGA would have been ideal
for consistency with prior work, but from the data it is un-
clear where they stand (Oliviera et al., 2017; Padovani et al.,
2021). Anecdotally, GAVGA seemed to be terminating in
seconds, which in could be similar to the speed at which
dRTDP and nmRTDP reached some optima, but nothing
greater can be drawn from these observations without test-

ing.

There may be an inherent advantage to genetic algorithms
(GAs) for the fragment assembly problem. In a massive
state space, they anchor on good solutions in search of bet-
ter ones, while episodic MDP formulations force a restart.
On that line, in GAs, the mutations to solutions can occur
anywhere, giving a greater flexibility in what is considered
a neighbor; this stands in direct contrast to the top-down na-
ture of episodic MDPs. It’s possible that genetic algorithms
could be a generalization of this MDP formulation, with
edges connecting what we considered terminal states. The
episodic MDP formulation introduces an extra restriction
when there may not need to be one.

In general, it was already known that the MDP formulation
was heavily flawed. With a massive amount of reads, one
is forced to confront the curse of dimensionality given the
ever-expanding state representation (Sutton & Barto, 2018);
issues with thoroughly searching and memory would likely
making scaling to real-world genomes difficult. Anecdotally,
we observed over 10 gigabytes of memory being used to run
RTDP these microgenomes, which is a troubling sign when
biological data are orders of magnitude larger.

And thus, even with an marked improvement in searching
the episodic MDP representation of the fragment assembly
problem, it is unclear how much these contributions could
scale. There is definitely work that can still be done to
improve the MDP approaches that we have explored so
far. However, the restricted nature of the episodic MDP
formulation, and the dimensionality that accompanies it,
may make this infeasible in practice.

Acknowledgements

Thank you to Eura Shin and Professor Susan Murphy for
their invaluable feedback during the course of this project.
Thank you as well to Dr. Raaz Dwivedi for giving feedback
and revisions on both the poster and paper, including pro-
viding the calculation in Section 3.2. Additionally, thank
you to all three for teaching STAT 234 in Spring 2022.

References

Barto, A., Bradtke, S., and Singh, S. Learning to act using
real-time dynamic programming. Artificial Intelligence,
72(1-2):81-138, 1995.

Bocicor, M., Czibula, G., and Czibula, I. A Reinforcement
Learning Approach for Solving the Fragment Assembly
Problem. In 2011 13th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing,
pp. 191-198, 2011.

Czibula, G., Czibula, I., and Bocicor, M. A Compari-
son of Reinforcement Learning Based Models for the
DNA Fragment Assembly Problem. Studia Universitatis
Babes—Bolyai, Informatica, 58(2):90-102, 2013.

Kikuchi, S. and Chakraborty, G. An Efficient Genome Frag-
ment Assembling Using GA with Neighborhood Aware
Fitness Function. Applied Computational Intelligence
and Soft Computing, 2012.

Oliviera, R., Damasceno, F., Souza, R., Santos, R., Lima,
M., Kawasaki, R., and Sales, C. GAVGA A Genetic Algo-
rithm for Viral Genome Assembly. In EPIA Conference
on Artificial Intelligence 2017, pp. 395-407, 2017.

Padovani, K., Xavier, R., Carvalho, A., Reali, A., Chateau,
A., and Alves, R. A step towards a reinforcement learning
de novo genome assembler. arXiv, 2021.

Pevzner, P., Tang, H., and Waterman, M. An Eulerian path
approach to DNA fragment assembly. Proceedings of
the National Academy of Sciences of the United States of
America, 98(17):9748-9753, 2001.

Smith, T. and Waterman, M. Identification of common
molecular subsequences. Journal of Molecular Biology,
147(1):195-197, 1981.

Sutton, R. and Barto, A. (eds.). Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 2nd edition,
2018.

Wetcharaporn, W., Chaiyaratana, N., and Tongsima, S. DNA
Fragment Assembly: An Ant Colony System Approach.
In EvoWorkshops 2006: Applications of Evolutionary
Computing, pp. 231-242, 2006.

RTDP for De Novo Genome Assembly

Xavier, R., Padovani, K., Chateau, A., and Alves, R.
Genome Assembly Using Reinforcement Learning. In
Brazilian Symposium on Bioinformatics 2019: Advances
in Bioinformatics and Computational Biology, pp. 16-28.
Springer, Cham, 2019.

