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1 Summary
1.1 Conditional Expectation, Adam’s & Eve’s Laws

Rehash:

Definition 1 (Conditional expectation given event). The conditional expectation of a random
variable X given an event A is

E(X|A) =

{
∑x P(X = x|A) X discrete,∫ ∞
−∞ x f (x|A)dx X continuous.

Definition 2 (Law of total expectation). Suppose A1, A2, . . . are events partitioning the sample space.
Then the law of total expectation (LOTE) states that

E(X) = ∑
j

E(X|Aj)P(Aj).
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New content:

Definition 3 (Conditional expectation given random variable). For random variables X, Y, E(Y|X)
is the conditional expectation of Y given X. If E(Y|X = x) = g(x), then E(Y|X) = g(X).

Definition 4 (Conditional variance given random variable). Conditional variance can be defined
through conditional expectation:

Var(Y|X) = E[(Y − E[Y|X])2|X] = E[Y2|X]− (E[Y|X])2.

h 5. Note that E(Y|X) is a random variable, where X is the only source of randomness. E(Y|X) =
X2 is a valid conditional expectation, while E(Y|X) = Y is not a valid conditional expectation.
Similarly, Var(Y|X) is a random variable that is a function of X alone.

Example 6. Let X ∼ Pois(λ) and Y|X = x ∼ N (x2 − 5, σ2). Then since E(Y|X = x) = x2 − 5,
E(Y|X) = X2 − 5, which is a random variable that is a function of X.

Example 7. Let X ∼ Expo(λ) and Y|X = x ∼ N (µ, X). Then since Var(Y|X = x) = x, Var(Y|X) =
X.

Result 8 (Adam’s Law). For random variables X and Y, Adam’s law (also known as law of total
expectation, tower rule, law of iterated expectation, etc.) states that

E(Y) = E(E(Y|X)).

Result 9 (Eve’s Law). For random variables X and Y, Eve’s law (also known as EVVE, law of total
variance, etc.) states that

Var(Y) = E(Var(Y|X)) + Var(E(Y|X))
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1.2 Inequalities
For random variables X, Y,

Name Formula Conditions

Cauchy-Schwarz |E(XY)| ≤
√

E(X2)E(Y2) X, Y have finite variance
Jensen E(g(X)) ≥ g(E(X)) g convex

E(g(X)) ≤ g(E(X)) g concave
Markov P(|X| ≥ c) ≤ E|X|

c c > 0
Chebyshev P(|X − E(X)| ≥ c) ≤ Var(X)

c2 c > 0

Definition 10 (Convexity and concavity). A function g (defined on an interval I) is convex by any
of the following equivalent definitions:

• g(px1 + (1 − p)x2) ≤ pg(x1) + (1 − p)g(x2) for x1, x2 ∈ I and p ∈ (0, 1),

• Any line segment connecting two points on the graph of g is always at or above the graph of g,

• If the second derivative exists, d2g(x)
dx2 ≥ 0.

A function g is concave if −g is convex. Specifically,

• Any line segment connecting two points on the graph of g is always at or below the graph of
g,

• If the second derivative exists, d2g(x)
dx2 ≤ 0.

You may have previously seen "concave up" for convex and "concave down" for concave. Note that
linear functions are both convex and concave because their second derivatives are 0 everywhere.

See A.2.4 in Blitzstein & Hwang for details and Figure A.3 for a visual.

Remark 11 (On Jensen’s inequality). To remember the direction of Jensen’s inequality, I use the
fact that X2 is a convex function of X. I know that E(X2) ≥ (E(X))2 by the fact that variance is
nonnegative, which means E(g(X)) ≥ g(E(X)) for g convex.
Equality, E(g(X)) = g(E(X)), only holds if g is a linear function, like g(X) = a + bX. This is
consistent with our previous results because linear functions are both convex and concave, and also
follows from the linearity of expectation.

Remark 12 (Identifying which inequality to use). The four inequalities in this section are essentially
the only inequalities we assess (some specific cases like the boundedness of correlation and non-
negativity of variance can come up as well). Here are some thoughts on my first-glance thoughts
whene I try to identify which of the four inequalities to use. Keep in mind that at the end of the day,
there are few enough that you can try all of them out.

• When there is a single expectation on one side (e.g., E(XYZ)) and multiple expectations on
the other side of a potential inequality (e.g., E(X)E(Y)E(Z)), I look to Cauchy-Schwarz

• If I see an expectation of fancy function on one side of an inequality (e.g., E(log XeX) and a
fancy function of an expectation on the other side (e.g., log(E(X))eE(X)), I look to Jensen’s
inequality.

• If there is a probability on one side and an expectation/constant on the other side of an
inequality, I look to Markov/Chebyshev
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1.3 Limit theorems

Let X1, X2, X3, . . . be i.i.d. with E(X1) = µ and Var(X1) = σ2, where both mean and variance are
finite. Notate X̄n = 1

n (X1 + · · ·+ Xn).

Remark 13. Note that X̄n is a random variable with mean µ and variance σ2

n .

Result 14 (Law of Large Numbers). A law of large numbers (LLN) states that as n gets large, X̄n
converges to µ. Note that there are many LLNs (e.g., for some types of non-i.i.d. r.v.s), but we only
discuss the following:

• Strong LLN: P(X̄n → µ) = 1. Since the random variables are defined on some sample space
S, this is saying that P({s ∈ S : Xn(s) → µ}) = 1. This is known as almost sure convergence,
notated X̄n

a.s.→ µ.

• Weak LLN: For all ϵ > 0, P(|X̄n − µ| > ϵ) → 0 as n gets large. This is known as convergence
in probability, notated X̄n

p→ µ.

Result 15 (Central Limit Theorem). A central limit theorem states that as n gets large,

√
n
(

X̄n − µ

σ

)
→ N (0, 1) in distribution.

Convergence in distribution is notated as D→, so we could say
√

n
(

X̄n−µ
σ

)
D→ N (0, 1). As before,

there are many variants of such results but we only discuss the i.i.d. case here. We can use this to
get approximate distributions of X̄n for large n:

X̄n
·∼ N (µ,

σ2

n
).

h 16. Note that we cannot say X̄n converges to N (µ, σ2/n) because that would leave an n in the
limit (which is a problem because limits as n approaches as value should not involve n). We could,
however, say that

√
n(X̄n − µ) → N (0, σ2) in distribution.
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2 Practice Problems
1. (inspired by HW 5.3) [Adam’s & Eve’s laws] Suppose George has N ∼ Pois(λ) children in his

lifetime, and his i-th child has Gi ∼ Pois(λ) children themselves, and G1, . . . , GN , N are all
independent.

(a) Find the expected number of grandchildren that George has.

(b) Find the variance of the number of grandchildren George has.
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2. [Limit Theorems] Let Yn ∼ Bin(n, p).

(a) Use the Central Limit Theorem to find the asymptotic distribution of Yn√
npq −

√
np
q as

n → ∞.
Hint: recall that we can showed the central limit theorem for

√
n(X̄n − µ) where X̄n is the

average of i.i.d. X1, . . . , Xn with µ = E(X1). Apply the CLT to some expression involving Yn

using the story of the Binomial and rearrange it to get Yn√
npq −

√
np
q .

(b) Apply the Law of Large Numbers to find what Yn/n converges to as n → ∞.
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3. (William Chen and Sebastian Chiu 2013) [Inequalities] Fill each inequality below with either
=, ≤, ≥, or ?. In all instances below, assume that X and Y are positive random variables,
although not necessarily independent. Assume that the expected values exist.

(a)

E(X4)
√

E(X2)E(X6)

(b)

P(|X + Y| ≥ 2)
1
16

E((X + Y)4)

(c) √
E(X) + 50 E(

√
X + 50)
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(d)
E(Y|10X) E(Y|X)

(e)
E(cos(X)) cos(E(X))
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