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1 Summary
1.1 Basic Markov chain definitions and results
Definition 1 (Markov chain). A sequence of random variables X0, X1, X2, . . . is said to have the
Markov property if

P(Xj+1 = xj+1|X0 = x0, X1 = x1, . . . , Xj = xj) = P(Xj+1 = xj+1|Xj = xj).

If we consider to be a series over time, then if we condition on a set of timepoints, we only need to
keep the most recent information — the rest is redundant (i.e., conditionally independent) given
more recent information. Note that this does NOT mean that Xj+1 is independent of X0, . . . , Xj−1,
but it is conditionally independent of those given Xj.

A sequence with the Markov property is said to be a Markov chain.

Definition 2 (States and state space). The support of the Xj is called the state space: formally, it is⋃∞
i=1 support(Xi). We will often refer to the value of a Markov chain at a certain time as its current

state. In Stat 110, we will only discuss finite state spaces, usually the integers {1, . . . , M} (M is not
random, just a constant).

Definition 3 (Time homogeneity). A Markov chain is said time-homogeneous if

P(Xj+1 = xj+1|Xj = xj) = P(X1 = xj+1|X0 = xj)

for all j. That is, the PMF of the next state only depends on the current state, but not the current
time. All Markov chains in Stat 110 will be time-homoegeneous.

Definition 4 (Transition matrix). A time-homogeneous Markov chain with M states (using the state
space {1, . . . , M}) can be represented by the M × M transition matrix Q, where

Qij = P(X2 = j|X1 = i)

for any 1 ≤ i, j ≤ M. Note that the each row of a transition matrix must sum to 1 since ∑j P(X2 =
j|X1 = i) is a sum over the conditional PMF of the next state given the current state is i.

Notation 5 (PMF as a vector). For a discrete random variable X with support {1, . . . , M}, we can
represent the PMF as a vector t⃗:

t⃗ =
(

P(X = 1) · · · P(X = M).
)

So we can think of each row of the transition matrix as the PMF of the next state given the current
state. Note that when discussing Markov chains in Stat 110 we’ll use row vectors for the PMFs.

Remark 6 (Initial state). While the transition matrix tells us the PMF of the next state given the
current state, we need to start from somewhere — usually the first state, X0. X0 can be a constant,
or have its own PMF defined completely separately from the chain itself, which can affect the
long-term behavior of the chain.
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Result 7 (n-step transition probability). The n-step transition probabilities P(Xn+k = j|Xk = i),
are given by Qn; i.e.,

Qn
ij = P(Xn+k = j|Xk = i).

If the PMF of the initial state X0 is t⃗, the unconditional PMF of Xn (the n-step distribution) is t⃗Qn.

Definition 8 (Irreducible chain). A chain is irreducible if it is possible to (eventually) reach any
state j from any other state i. That is, there exists some n such that Qn

ij > 0.

Definition 9 (Recurrent state). A state i is recurrent if, when we start at state i, the probability of
returning to state i is 1. In irreducible chains, all states are recurrent.

Definition 10 (Transient state). Conversely, a state i is transient if there is a nonzero probability of
never returning to state i. If we call this probability p, then the number of returns to state i (before
never returning) is distribued Geom(p).

Definition 11 (Periodicity). On the right-hand chain of Figure 1, we can see that to return to state
1, we must take 3 steps. The period of a state is the greatest common denominator of the possible
amounts of steps one must take to return to the state. A state is aperiodic if its period is 1; a chain is
aperiodic if all states are aperiodic.

Figure 1: Blitzstein & Hwang, Figure 11.2

Definition 12 (Reversibility). Let s⃗ represent a valid PMF as a row vector. A Markov chain with
transition matrix Q is said to be reversible if for all i, j, if

siQij = sjQji.

Remark 13 (Graphical representation of Markov chains). Figure 1 shows two graphical represen-
tations of Markov chains. The nodes (circles with numbers in them) are the possible states in the
chain, while the edges (arrows) show which transitions between states are possible. Edges can
weights (numbers) next to them, either representing the probability of the denoted transition or
a number proportional to it. If the edges have no weights, then you should assume that every
outgoing edge from a certain state has equal probability. For example, on the left-hand graph in
Figure 1, state 2 has two outgoing edges, P(Xj+1 = 3|Xj = 2) = P(Xj+1 = 4|Xj = 2) = 1

2 . If an
edge is not drawn then that transition probability is 0; i.e., P(Xj+1 = 1|Xj = 1) = 0. If edges do not
have arrows (or have arrows at both ends), then you can assume that both transition directions are
possible.
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Result 14 (Random walk on an undirected network). We can represent some Markov chains as
undirected graphs with uniform edge weights; in our graphical representation of Markov chains,
that means edges won’t have weights drawn and will not have directional arrows. This means that

1. Every positive term of the i-th row of Q is equal (for all i): valid examples of rows for a 4-state
chain include (0, 1, 0, 0), ( 1

3 , 0, 1
3 , 1

3 ), (
1
4 , 1

4 , 1
4 , 1

4 ).

2. For all i, j, if Qij > 0, then Qji > 0.

We define the degree sequence as the number of edges attached to each node; the i-th entry is the
number of positive terms in the i-th row of Q. Note that self-edges are included in this count. These
chains are reversible.

Result 15 (Birth-death chain). A birth-death chain is a Markov chain where each step moves at
most one position to the left or right: e.g., if the current state is 5, then the next state must be 4, 5, or
6. Any birth-death chain is reversible.

1.2 Stationary distributions and how to find them

Definition 16 (Stationary distribution). Let s⃗ ∈ RM be a row vector that is valid PMF for a Markov
chain with M states. Then s⃗ is stationary if

s⃗Q = s⃗.

Result 17 (Irreducible chain/expected return time). Irreducible Markov chains have unique sta-
tionary distributions; every state has positive probability in this distribution. If this stationary
distribution is s⃗, the expected time to return to state i when starting at state i is 1

si
.

Result 18 (Columns sum to 1). If each column of the transition matrix Q sums to 1, then the
stationary distribution is uniform.

Result 19 (Irreducible and aperiodic convergence). A chain is irreducible and aperiodic if and
only if there exists some power of the transition matrix Qm with all entries positive. Such chains
converge to their unique stationary distribution.

Result 20 (Reversible chain). If a Markov chain with transition matrix Q is reversible with respect
to s⃗, then s⃗ is stationary. The converse is not necessarily true: reversible implies stationary, but
stationary does not imply reversible.

Result 21 (Random walk on an undirected network). If a Markov chain can be represented as an
undirected graph with uniform edge weights, then the stationary distribution is proportional to
the degree sequence. It is also shown in Blizstein & Hwang (Exercise 11.20) that for an undirected
weighted graph, that the stationary distribution is proportional to the sum of edge weights connected
to each node, si ∝ ∑j wij, where wij are the edge weights.

Result 22 (Birth-death chain). You can find the stationary distribution of a birth-death chain by
doing the algebra.

1. Solve for s2 in terms of s1 using the reversibility condition.

2. Solve for s3 in terms of s2 using reversibility. Then plug the previous step to get s3 in terms of
s1.

3. Continue this way until you have all si in terms of s1.
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4. Since the stationary distribution must be a valid PMF, ∑i si = 1. Plug in all values in terms of
s1 and solve for s1, which thus gives you the full stationary distribution.

Remark 23. If you are familiar with linear algebra, s⃗ is a left-eigenvector of Q with eigenvalue 1. In
Stat 110, you will never have to solve such a matrix equation explicitly. Instead, if asked to find the
stationary distribution of a complicated-looking Markov chain, try to use one of the results above
(e.g., show the Markov chain matches one of the special cases above for which we are given the
result).

1.3 Metropolis-Hastings
One of the most important uses of Markov chains is for sampling complicated distributions. This
general class of sampling methods is called Markov Chain Monte Carlo (MCMC), of which we’ll
introduce a fundamental example:

Algorithm 24 (Metropolis-Hastings). Suppose we want to draw samples from a distribution with
PMF (in vector form) s⃗ = (s1, . . . , sM) over support {1, . . . , M} where all si > 0. Suppose P = (pij) is
an M × M transition matrix over the state space {1, . . . , M}. We construct a Markov chain X0, X1, . . .
in the following way:

1. Start at X0 (use any procedure to set the initial state, as long as it is in the support {1, . . . , M}).

2. At iteration n, suppose we have Xn = i. Propose a new state by sampling j ∼ Cat(pi1, . . . , piM),
where Cat represents a categorical distribution over states {1, . . . , M} where state j have
probability pij of being selected.

3. Compute acceptance probability

aij = min
(

sj pji

si pij
, 1
)

.

4. Flip a coin that lands Heads with probability aij.

5. If the coin lands Heads, accept the proposal by setting Xn+1 = j. If the coin lands Tails, reject
the proposal by setting Xn+1 = i.

6. Repeat steps 2–5 for each iteration.

The big result is that the Markov chain X0, X1, . . . , is reversible with stationary distribution s⃗.

1.3.1 Big-picture remarks (not necessary for Stat 110)

Metropolis-Hastings can be used to sample from complicated distributions over massive state
spaces as long as we have

1. An easy-to-sample distribution over the state space.

2. Possibly unnormalized probabilities t⃗ = (t1, . . . , tM)

This is allowed since s⃗ is only used as a ratio (in step 2) as sj/si. So if you have t⃗ = c⃗s, then
tj/ti = csj/csi = sj/si.

The distinction between s⃗ and t⃗ is that ∑i si = 1 (normalized) but ∑i ti can be anything (unnor-
malized). Yes, there do exist many distributions for which we can easily get unnormalized
probabilities, but not normalized probabilities (for example, many energy-based Boltzmann
distributions that you might hear about in statistical thermodynamics).
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MCMC methods like Metropolis-Hastings still have many problems and are an active area of
research: for example,

• They can be slow to converge to the stationary distribution and it may be difficult to tell how
long to wait.

• Samples between adjacent steps can be highly dependent (especially with a bad proposal
distribution), so you might have to throw out intermediate samples if you want i.i.d. samples
from the desired distribution s⃗.
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2 Practice Problems
1. Chess (Extension of Ben Banavige and Jeremy Welborn, 2016).

A chess piece is moving randomly on the modified chess board below. In one move, the piece
can move right, left, up or down (unless on an edge), with equal probabilities for each legal
move.

(a) How can we think of this board as a Markov chain? Specifically, what are the states and
the transition probabilities?

Solution
The states are the 12 possible positions on the board. There are only two distinct types
of positions: the center four, and the outer eight. The transition probability from a
center square to any of the four adjacent squares is 1/4. The transition probability
from an outer square to any of the two adjacent squares is 1/2.

(b) Is this chain irreducible? Is it aperiodic?

Solution
Irreducible: yes. Each square can be reached from every other square in a finite
number of moves (at most 4).
Aperiodic: yes. For each square, we can return to the square in two moves (go to an
adjacent square and back) and in three moves (e.g., travel counterclockwise in a 2x2
square). So the period of every square is 1, making the chain aperiodic.

(c) At some step far in the future, what is probability of the piece being at each square in the
grid?

Solution
We can make this into an undirected graph (since if moving from square i to j is a
legal move, then so is moving from j to i) with uniform edge weights (since every
legal move from a given square is equally likely).
To get the distribution of the piece’s position at “some step far in the future,” we find
the stationary distribution. For unweighted, undirected graphs, this is proportional to
the degree sequence. Here the 4 interior squares have degree 4 and the 8 outer squares
have degree 2. Normalizing this degree sequence gives the stationary distribution
in the image below. The distribution of the chess piece’s position converges to this
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distribution since it is irreducible and aperiodic by (b).
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(d) Consider a distribution on the chess board given by the PMF below. Show that the
Markov chain given by the piece’s position is reversible with respect to this distribution.
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Solution
In part (c) we showed that this is the stationary distribution of the Markov chain.
In our results we had that these random walks on undirected graphs are reversible.
Let’s explicitly show it, as well.
Once again, we only need to consider cases between the two types of squares. Note
that cases with zero transition probabilities associated between the between the two
states are automatically satisfactory since Qij = 0 implies Qji = 0 for transition matrix
Q in this setup.

• Center to center satisfies reversibility criterion.

1
4

1
8
=

1
4

1
8

.

• Outer to outer satisfies reversibility criterion.

1
2

1
16

=
1
2

1
16

.

• Center to outer/outer to center satisfies reversibility criterion.

1
4

1
8
=

1
2

1
16

.
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So by showing the reversibility criterion for every pair of states, we have shown that
the chain is reversible with respect to the given distribution.

(e) Suppose your piece starts at the first square in the second row. What is the expected time
for the piece to return to that square?

Solution
By Result 17 and (c), the expected return time is 1

1/16 = 16 moves.

2. Consider the Markov chain below.

2 3 41
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(a) Suppose the Markov chain starts at state 2. What is the expected number of times that
the chain is at state 2 (including the initial state)?

Solution
State 2 is transient, and at each visit there is a 1/4 probability of never returning
(transitioning to state 3). By the result in Definition 10, the expected number of returns
to state 2 is distributed Geom(1/4). So the total number of visits to state 2 is one
more than that, and thus distributed FS(1/4). The expectation is thus 1/(1/4) = 4.

(b) Suppose the Markov chain starts at state 3. What is the expected number of returns to
state 3?

Solution
State 3 is recurrent, so there will be an infinite number of visits to state 3.

(c) What is the stationary distribution of this chain?

Solution
It is evident that the stationary distribution will only have mass on states 3 and 4,
since eventually it will leave 1 and 2 and never return. So the stationary distribution
is of the form (0, 0, s3, s4). Moving one step forward gives us that

s3 =
1
2

s3 +
3
4

s4,

s4 =
1
2

s3 +
1
4

s4.
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Since s3 + s4 = 1,

s3 =
1
2

s3 +
3
4
(1 − s3)

s3 =
3
4
− 1

4
s3

5
4

s3 =
3
4

s3 =
3
5

.

Plugging this into the second equation shows this is consistent:

2
5
=

1
2

3
5
+

1
4

2
5

=
3
10

+
1
10

=
2
5

.

So the stationary distribution is (0, 0, 0.6, 0.4).
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