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1 Summary
1.1 Random variables

Definition 1 (Random variable). A random variable X is a function X : S → R that maps the
sample space to the real line. We usually omit the function notation and just say talk about the
value of X.

Definition 2 (Support). The support of a random variable X is the image of the sample space S.
Precisely, the support is {x : there exists ω ∈ S such that X(ω) = x}.

Definition 3 (Probability mass function, PMF). The probability mass function (PMF) is a function
that takes a real number, x ∈ R, as input and outputs the probability that the random variable takes
on that value, P(X = x). So the PMF is a function with domain R and codomain [0, 1].

• You should address every possible value of x when defining the function.

– For every x in the support of X, P(X = x) > 0.

– For every x not in the support of X, P(X = x) = 0.

• The probabilities should be valid:

∑
x∈R

P(X = x) = 1,

P(X = x) ∈ [0, 1] for all x ∈ R.

Definition 4 (Cumulative density function, CDF). The cumulative density function (CDF) is a
function that takes in a real number, x ∈ R, and outputs the probability that the random variable is
less than or equal to x, P(X ≤ x). So the CDF is a non-decreasing function (either increasing or a flat
line) with domain R and codomain [0, 1].

• You should again address every possible value of x, both in and not in the support.

• A valid CDF should be non-decreasing, with

lim
x→0

P(X ≤ x) = 0,

lim
x→1

P(X ≤ x) = 1.

• If the random variable has a bounded support (basically, there are some values that are too
small or too big to be possible), then

– If x is smaller than every value in the support, P(X ≤ x) = 0.

– If x is larger than every value in the support, P(X ≤ x) = 1.
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Notation 5 (i.i.d.). We often have some random variables X1, . . . , Xn that are independendent and
identically distributed, which we will abbreviate with the acronym i.i.d.

Notation 6 (“distributed as”). For a named distribution like the Binomial, we notate X being
distributed as Bin(n, p) with X ∼ Bin(n, p).

h 7. We CANNOT set X = Bin(n, p). Random variables cannot equal named distributions, they
just follow the pattern given by the named distribution. As Joe says, the named distributions are a
blueprint, the random variable is a house.

Remark 8 (finding the distribution of an r.v.). If you are asked the distribution of a random variable
(r.v.), you can give either the named distribution (with parameters defined), the PMF, or the CDF.
Here’s a general workflow:

1. Define the support of your r.v.

2. See if the random variable matches the story of any of the named distributions we have
discussed. To see if an r.v. matches a distribution, some things to check are

• For which named distributions is the support of your r.v. possible?

• Are there draws/samples/trials? If so, are they independent?

• If there is sampling, is it done with or without replacement?

3. If you can match a named distribution, what are the parameters? Are those parameters
allowed for that named distribution?

4. If you can’t match a named distribution, calculate the PMF using the information you checked
about sampling and your counting skills.

1.2 Discrete distributions

You can find things like the support, PMF, CDF, and expectation in the table of distributions at the
end of the textbook or start of the midterm handout. We’ll focus on the stories and connections
between distributions. For these discrete random variables (except for the Poisson), you should
develop comfort with calculating their PMFs from scratch.

1.2.1 Bernoulli

Story: We run a trial with probability p of success. Let the random variable X be 1 if the trial
succeeds or 0 if the trial fails. Then X ∼ Bern(p).

Connections:

• For X ∼ Bern(p), 1 − X ∼ Bern(1 − p).

• For X ∼ Bern(p), X2 = X, so X2 ∼ Bern(p). If you’re wondering why, check the support!

1.2.2 Binomial

Story: We run n independent trials, each with an equal probability p of success. Let X be the number
of successful trials. Then X ∼ Bin(n, p).

Connections:
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• For n independent and identically distributed Bernoulli random variables X1, . . . , Xn
i.i.d.∼ Bern(p),

n

∑
i=1

Xi ∼ Bin(n, p).

• This means Bern(p) is equivalent to Bin(1, p).

• For independent random variables X ∼ Bin(n, p) and Y ∼ Bin(m, p),

X + Y ∼ Bin(n + m, p).

1.2.3 Hypergeometric

Story:

• Capture/recapture elk: There are N elk in the forest. In the past, we captured and tagged m
of the elk. We now recapture n of the elk, where every set of n is equally likely and elk are
sampled without replacement. Let X be the number of tagged elk among our n recaptured
elk. Then X ∼ HGeom(m, N − m, n).

• White and black balls in an urn: There are w white balls and b black balls in a urn. We draw n
balls from the urn without replacement, where each set of n balls is equally likely to be drawn.
Let X be the number of white balls in our sample. Then X ∼ HGeom(w, b, n).

Connections:

• There’s no inherent difference between the first and second samples, so HGeom(m, N − m, n)
is the same as HGeom(n, N − n, m).

• Notice the comparison between the Binomial and the Hypergeometric: using the urn story, if
we sampled *with* replacement our random variable would be distributed Bin(n, w

w+b ).

1.2.4 Geometric/First Success

Story: Suppose we’re running independent Bernoulli trials with probability p of success. We stop
running trials once one succeeds. Let X be the number of failed trials before (and *not* including)
the first successful trial. Then X ∼ Geom(p).

Connections:

• The First Success distribution is essentially the same as the Geometric, but we include the
first successful trial as part of our count. So it always holds that for X ∼ Geom(p), we have
X + 1 ∼ FS(p).

• Note that the Geometric/First Success distributions have infinite supports, while the Binomial
has a fixed number of trials. This is a quick way to tell them apart.

1.2.5 Negative Binomial

Story: Suppose we’re running independent Bernoulli trials with probability p of success. We stop
running trials after the rth success. Let X be the number of failed trials before the rth success (not
including any of the successes in that count). Then X ∼ NBin(r, p).

Connections
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• For independent and identically distributed X1, X2, . . . , Xr
i.i.d.∼ Geom(p), we get ∑r

i=1 Xi ∼
NBin(r, p).

• This means NBin(1, p) is equivalent to Geom(p).

1.2.6 Poisson

Story: There’s no exact story to derive a Poisson. The only situation in which you’ll have to come
up with the Poisson on your own is in approximation, and that is quite rare.

Approximate story: Say there are many rare events A1, A2, . . . , An (so n large and P(Ai) =<< 1,
which stands for much smaller than 1) which are nearly independent (which doesn’t have a
rigorous definition). Then if we let λ = ∑n

i=1 P(Ai), X = ∑n
i=1 I(Ai) is approximately distributed

Pois(λ).

Connections:

• As you can see in the approximate story, you can use the Poisson to count the number of
independent/weakly-dependent rare events that occur.

• Suppose X ∼ Pois(λ) and Y ∼ Pois(µ) with X, Y independent. Then X + Y ∼ Pois(λ + µ).

• Chicken-Egg: suppose a chicken lays N eggs, with N ∼ Pois(λ). Suppose each egg has
a probability p of hatching, with each egg’s hatching being independent, and let X be the
number of eggs that hatch and Y be the number of eggs that don’t hatch.

– X and Y are independent. X and Y are very conditionally independent given N since
N = X + Y.

– X ∼ Pois(λp), Y ∼ Pois(λ(1 − p)).

– X|N = n ∼ Bin(n, p).

• For fixed λ = np, as n → ∞ and p → 0 we have Bin(n, p) → Pois(λ).

1.3 Expectation
Definition 9 (Expectation). The expectation of a random variable X with support A is the weighted
average of its possible values, where we weight based on the probability of X taking on each value
in its support. It is formally defined as

E(X) = ∑
x∈A

xP(X = x).

Result 10 (Linearity). Linearity states that for any random variables X, Y (which can be dependent!)
and real number c,

E(X + Y) = E(X) + E(Y),

E(cX) = cE(X).

Result 11 (LOTUS). The law of the unconscious statistician (LOTUS) states that the expectation of
any function of a random variable, g(X), can be found by

E(g(X)) = ∑
x∈A

g(x)P(X = x).
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For example, if we want to find E(X2), we simply swap x2 in for x in the expectation formula to
get E(X2) = ∑x∈A x2P(X = x). Note that the probabilities here don’t change, only what goes in
front.

1.3.1 Indicator Random Variables

Definition 12 (Indicators). An indicator random variable converts an event into a Bernoulli
random variable. For an event A with P(A) = p, the corresponding indicator random variable
I(A) ∼ Bern(p). This random variable is defined such that I(A) = 1 if A occurs and I(A) = 0 if Ac

occurs. You might see other equivalent notation like IA or I, just be clear about which event your
indicator random variable corresponds to.

Result 13 (Fundamental bridge). The fundamental bridge (vocab which is not used outside of Stat
110) gives that

E(I(A)) = P(A).

We use this result a lot to calculate expectations of random variables that can be expressed as the
sum of indicators. This is nice because the indicators can be dependent, but linearity allows us to
break the expectations apart!

Remark 14 (Using indicators). A very common workflow to calculate an expectation is to write

1. Write the random variable as the sum of indicators, X = ∑i I(Ai), where each Ai is an event.

2. Apply linearity, E(X) = ∑i E(I(Ai)).

3. Use the fundamental bridge, E(X) = ∑i P(Ai).

1.4 Variance
Definition 15 (Variance). The variance of a random variable X is

Var(X) = E((X − E(X))2).

Here basically all of the facts you have to know about variance:

• You’ll usually use this equivalent formula instead:

Var(X) = E(X2)− (E(X))2

• Var(X) = 0 if X takes on a certain value with probability 1; for example, if P(X = 3) = 1.
Var(X) > 0 otherwise.

• For a scalar c ∈ R and a random variable X,

Var(cX) = c2Var(X)

Var(X + c) = Var(X).

• For independent random variables X and Y

Var(X + Y) = Var(X) + Var(Y).

For dependent random variables X and Y,

Var(X + Y) ̸= Var(X) + Var(Y).
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1.5 Handy math facts

• You are expected to know how to find the sum of an infinite geometric series: if |x| < 1,

∞

∑
n=0

xn =
1

1 − x
.

otherwise the sum does not exist (it diverges). For finite geometric series (and any x ̸= 1),

∞

∑
n=0

xn =
1 − xn

1 − x
.

• You are also expected to be familiar with some ex approximations, but you usually won’t be
asked to approximate without prompting. The Taylor series of ex is

ex =
∞

∑
n=0

xn

n!
.

The compound interest formula also gives

ex = lim
n→∞

(1 +
x
n
)n.
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2 Practice Problems
1. The difference between "=" and "∼". Every day, I flip a fair coin and eat breakfast if it lands

heads. Let B1 be the event that I ate breakfast yesterday, and let B2 be the event that I ate
breakfast today.

For each of the following questions, you have three options:

• They are equal, =,

• they only share the same distribution, ∼,

• or neither.

Note that random variables that are equal always share the same distribution - pick the most
specific option.

(a) What is the relationship between I(B1) and I(B2)?

Solution
I(B1) and I(B2) are both distribution Bern(1/2).

(b) What is the relationship between I(B1) and I(Bc
1)?

Solution
I(B1) and I(Bc

1) are both distribution Bern(1/2).

(c) What is the relationship between I(B1) and 1 − I(Bc
1)?

Solution
I(B1) = 1 − I(Bc

1).

2. Category errors. Let X1, X2 be random variables, let A1, A2 be events, and let p1 = 0.4, p2 = 2.
For each pair, identify which are category errors (usually only one, but could be neither/both!).

P(A1) = p1 vs. P(X1) = p1

P(A1 = 3) = p1 vs. P(X1 = 3) = p1

P(I(A1) = 1) = p1 vs. P(I(X1) = 3) = p1

A1 + A2 vs. X1 + X2

A1 ∩ A2 vs. X1 ∩ X2

P(A2) = p2 vs. P(X2) = p2

P(p1) = p2 vs. P(p2) = p1

A1 ∼ HGeom(n, r, p) vs. X1 ∼ Bin(n, r, p)

Solution
We’ll go through every category error and why:

• P(X1) = p1: P(X1) is the problem. We can’t take the probability of a random
variable.

• P(A1 = 3) = p1: A1 = 3 is the problem. A1 is an event (so a set), so it can’t equal a
number like 3.
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• P(I(X1) = 3) = p1: I(X1) is the problem. We can take the indicator of an event (like
I(A1)), but the indicator of a random variable is not well-defined.

• A1 + A2: adding events is the problem. A1 and A2 are both sets and we need to do
things like intersections or unions to combine them.

• X1 ∩ X2: intersecting random variables is the problem. X1 and X2 can be thought of
as functions or numbers; either way, we can only take the intersection of sets, not
random variables.

• Both P(A2) = p2 and P(X2) = p2 are category errors. Both are invalid since p2 /∈
[0, 1], so p2 cannot be the value of a probability. P(X2) is additionally problematic
because we can’t take the probability of a random variable.

• Both P(p1) = p2 and P(p2) = p1 are category errors. Both are invalid since we can’t
take the probability of a number, only events. P(p1) = p2 is additionally problematic
because p2 /∈ [0, 1].

• Both A1 ∼ HGeom(n, r, p) and X1 ∼ Bin(n, r, p) are category errors. A1 is an event,
not a random variable, so it cannot follow a distribution. While X1 is a random
variable, the Binomial distribution only takes two parameters, so Bin(n, r, p) is not
well-defined.

3. Rearranging probabilities into known PMFs/CDFs. It’s generally desirable to reuse known
results. For every problem below, rewrite the probability in terms the PMF of a named
distribution; you don’t have to solve beyond that. You may define new random variables
and write your probability in terms of the new r.v.s as long as those r.v.s also have named
distributions.

(a) Suppose X ∼ Bin(n, p). What is P(X ≥ 1)? Can you write this without a sum?

Solution
The support of a Binomial is {0, . . . , n}. Then

P(X ≥ 1) =
n

∑
k=1

P(X = k) = 1 − P(X = 0),

where the second step comes by complementary counting.

(b) Suppose Y ∼ FS(p). What is P(3 < (Y + 1)2 ≤ 9)?

Solution
Let’s first simplify the inequality:

P(2 < (Y + 1)2 ≤ 9) = P(
√

2 < Y + 1 ≤ 3)

= P(
√

2 − 1 < Y ≤ 2).

The support of a First Success r.v. is {1, 2, . . . , }. So since the
√

2 − 1 < 1, we actually
have that

P(
√

2 − 1 < Y ≤ 2) = P(Y ≤ 2)
= P(Y = 1) + P(Y = 2).
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(c) Suppose X, Y i.i.d.∼ Pois(λ). What is P(X + Y = 16)?

Solution
Since X and Y are independent Poissons, X + Y ∼ Pois(λ + λ). So if we define
Z = X + Y, then Z ∼ Pois(2λ) and we get

P(X + Y = 16) = P(Z = 16).

4. Calculating expectations

(a) [indicators] (based on Will Nickols’ Stat 111 section notes) There are n students in my section
and k practice problems to do. For each problem, I draw a student’s name out of a hat to
explain their solution, putting the student’s name back into the hat (so sampling students
with replacement).

i. What is the expected number of students get selected at least once?

Solution
Solution 1: Let X be the number of students selected at least once. We can write
this as X = ∑n

i=1 I(Ai), where Ai is the event that student i gets selected at least
once. So

E(X) =
n

∑
i=1

E(I(Ai)) =
n

∑
i=1

P(Ai) = nP(A1).

by linearity, the fundamental bridge, and symmetry, in that order.
Now see that P(A1) = 1 − P(Ac

1), where Ac
1 is the event that student 1 never gets

picked. So

P(A1) = 1 − P(Ac
1) = 1 −

(
n − 1

n

)k

.

This makes the final answer

E(X) = n

[
1 −

(
n − 1

n

)k
]

.

Solution 2: Let X be the number of students who get selected at least once. Let
X = ∑k

j=1 I(Bj), where Bj is the event that the student who solves the j-th problem
did not solve any of the previous problems. In this way, we only count a student
for the first time that they solve a problem, so each student is only accounted in
one indicator.

9



From here we proceed similarly to part (ii):

E(X) =
k

∑
j=1

E(I(Bj))

=
k

∑
j=1

P(Bj)

=
k

∑
j=1

[(
n − 1

n

)j−1
]

=
k

∑
j=1

(
n − 1

n

)j−1

.

That is the finite sum of a Geometric series, which we can simplify:

E(X) =
1 −

( n−1
n

)k

1 − n−1
n

= n

[
1 −

(
n − 1

n

)k
]

ii. What is the expected number of students who get selected exactly once? You may
leave your answer as a sum.

Solution
Let Y be the number of students who get selected exactly once. Let Y =

∑n
i=1 I(Di), where Di is the event that the i-th student gets selected exactly once.

Then E(Y) = nP(D1). We can count

P(D1) =

(
k
1

)
1
n

(
n − 1

n

)k−1

,

which is actually a Bin(k, 1
n ) PMF evaluated at 1. So

E(Y) = n
(

k
1

)
1
n

(
n − 1

n

)k−1

= k
(

n − 1
n

)k−1

.

(b) Suppose X is a random variable such that E(X2) = a and Var(X2) = b. What is E(X4) in
terms of a and b?

Solution
Note that

Var(X2) = E((X2)2)− (E(X2))2

= E(X4)− (E(X2))2.
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So

E(X4) = Var(X2) + (E(X2))2

= b + a2.
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(c) [challenge problem] Let X ∼ Geom(p) with q = 1 − p, let AX be the event that X is
even, and Y = I(AX)X/2. Find E(Y) exactly by pattern-matching the LOTUS expression
for E(Y) to the expectation of a (different) Geometric r.v.

Solution
Let’s use the notation that even if the subscript is not a random variable, Ak is the
event that k is event; so I(A8) = 1 always, I(A13) = 0 always, etc. Applying LOTUS
gives us

E(Y) = E(I(AX)X/2)

=
∞

∑
k=0

I(Ak)
k
2

P(X = k)

= ∑
k∈{0,2,4,6,...}

k
2

P(X = k).

We can rewrite this as a normal sum by setting k = 2i and summing over i, so

E(Y) =
∞

∑
i=0

iP(X = 2i)

Plugging in the PMF,

E(Y) =
∞

∑
i=0

ipq2i.

This looks similar to the expectation for a Geom(1 − q2) random variable. Then

E(Y) =
∞

∑
i=0

ipq2i

=
p

1 − q2

∞

∑
i=0

i(1 − q2)(q2)i.

Using the expectation of a Geometric, the sum above is ∑∞
i=0 i(1 − q2)(q2)i = q2

1−q2 .
This gives us

E(Y) =
p

1 − q2
q2

1 − q2 =
pq2

(1 − q2)2 .
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