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1 Summary
No MGF problems on the pset this week.

1.1 Universality of the Uniform

Recall that the standard uniform, U ∼ Unif(0, 1), has support (0, 1) with PDF 1 in the support.

Theorem 1 (Universality of the Uniform, UoU). If F is a valid CDF that is continuous and strictly
increasing over the support, then

1. Let U ∼ Unif(0, 1). Then F−1(U) is a random variable with CDF F.

2. Let X have CDF F. Then F(X) ∼ Unif(0, 1).

The first result applies to discrete random variables as well. The second result only works for continuous
random variables.

Proof. For continuous random variables with F as described in the theorem,

1. For x ∈ R,

P(F−1(U) < x) = P(F(F−1(U)) < F(x)) = P(U < F(x)) = F(x).

So F−1(U) has CDF F. We used the CDF of U in the last step, since F(x) ∈ [0, 1].

2. For u ∈ [0, 1],

P(F(X) < u) = P(F−1(F(X)) < F−1(u)) = P(X < F−1(u)) = F(F−1(u)) = u,

so F(X) ∼ Unif(0, 1) since it has the CDF of a standard uniform.

1.2 Normal distribution

Definition 2 (Standard Normal). Z ∼ N (0, 1) is a standard Normal random variable with support
R. We notate the CDF as Φ and PDF as ϕ.

Result 3 (Symmetry). The standard Normal is symmetric about 0. In math, for x ∈ R, ϕ(x) =
ϕ(−x).

• This also implies that Φ(x) = 1 − Φ(−x).

– So Φ(0) = 0.5.

• For Z ∼ N (0, 1), −Z ∼ N (0, 1) as well.
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Result 4 (Empirical rule/68-95-99.7 rule).

P(−1 < Z < 1) ≈ 0.68,
P(−2 < Z < 2) ≈ 0.95,
P(−3 < Z < 3) ≈ 0.997.

In this class, you can give exact answers in terms of Φ and ϕ. On psets, you should also use a
calculator/programming language/the empirical rule to get numerical approximations of Φ.

Definition 5 (General Normal). X ∼ N (µ, σ2) (with µ ∈ R, σ > 0) is a Normal random variable
with mean µ and variance σ2, and also has support R.

Result 6 (Location-scale). For Z ∼ N (0, 1), µ + σZ ∼ N (µ, σ2).
More generally, for X ∼ N (µ1, σ2

1 ), µ2 + σ2X ∼ N (µ2 + µ1σ2, σ2
1 σ2

2 ).

Result 7 (Standardization). For X ∼ N (µ, σ2), X−µ
σ ∼ N (0, 1).

We often use this to get results in terms of Φ:

P(X < x) = P(
X − µ

σ
<

x − µ

σ
) = Φ(

x − µ

σ
).

Corollary 8 (Empirical rule). For X ∼ N (µ, σ2),

P(µ − σ < X < µ + σ) ≈ 0.68
P(µ − 2σ < X < µ + 2σ) ≈ 0.95
P(µ − 3σ < X < µ + 3σ) ≈ 0.997

Result 9 (Sum of independent Normals). Let X ∼ N (µ1, σ2
1 ) and Y ∼ N (µ2, σ2

2 ) with X, Y indepen-
dent. Then

X + Y ∼ N (µ1 + µ2, σ2
1 + σ2

2 ),

X − Y ∼ N (µ1 − µ2, σ2
1 + σ2

2 ).

h 10 (Variance when subtracting). See that we always add the variance above! This is also a general
rule: for any independent random variables X and Y,

Var(X + Y) = Var(X − Y) = Var(X) + Var(Y).

1.3 Exponential distribution
Definition 11 (Exponential distribution). X ∼ Expo(λ) is an Exponential random variable with
mean 1

λ and variance 1
λ2 . λ is called the rate parameter.

Result 12 (Memorylessness). For X ∼ Expo(λ) and any s, t > 0, the memoryless property of the
Exponential distribution states the following (equivalent) results:

P(X > s + t|X > s) = P(X > t)
(X − s|X > s) ∼ Expo(λ).

See specifically that X − s|X > s is independent of the value of s.

The Exponential distribution is the only continuous distribution with this property. Additionally, the
Geometric distribution is the only discrete distribution with support {0, . . . , } that is memoryless.
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h 13. For most results we talk about, you can’t put a random variable in the place of a constant - you
might recall from last week’s problem set that we couldn’t let the sum of N independent Pois(λ) r.v.s,
with N random, be distributed Pois(Nλ). However, with memorylessness, you can put random
variables in the place of the s above - so for some random variable Y, (X − Y|X > Y) ∼ Expo(λ)
still.

Example 14 (Memorylessness). Suppose you’re waiting for a bus that will arrive in X ∼ Expo(λ)
minutes. If you wait for the bus for 10 minutes and it has not arrived, then the remaining time that
you have to wait is still distributed Expo(λ): X − 10|X > 10 ∼ Expo(λ). So no matter how long
you wait, the remaining time for you to wait has the same distribution.

Result 15 (Minimum of Expos). The minimum of n i.i.d. Expo(λ) random variables is distributed

Expo(nλ). In notation, for X1, . . . , Xn
i.i.d.∼ Expo(λ), min(X1, . . . , Xn) ∼ Expo(nλ).

h 16 (Maximum of Expos). The maximum of n i.i.d. Exponential distributions is not does not have
an Exponential distribution.

Remark 17 (Finding the distribution of minimums/maximums). The proofs for the results above
can be found in the book, but they provide a general template for finding the distributions of
minimums and maximums.

Let X1, . . . , Xn be any random variables. Then the events {min(X1, . . . , Xn) > x} and (X1 >
x) ∩ (X2 > x) ∩ · · · ∩ (Xn > x) are equivalent. To convince yourself of this, think about what this
means in words: the minimum of a set of numbers is greater than x if and only if each one of the
numbers is great than x.

To find the CDF of min(X1, . . . , Xn), a common workflow is

P(min(X1, . . . , Xn) ≤ x) = 1 − P(min(X1, . . . , Xn) > x) = 1 − P(X1 > x, X2 > x, . . . , Xn > x).

If X1, . . . , Xn are independent, then we can get that

P(X1 > x, X2 > x, . . . , Xn > x) = P(X1 > x)P(X2 > x) · · · P(Xn > x)

If X1, . . . , Xn are also identically distributed, we conclude with

P(X1 > x)P(X2 > x) · · · P(Xn > x) = (P(X1 > x))n.

For maximums, we follow a similar workflow, except instead using the fact that

{max(X1, . . . , Xn) < x} =
n⋂

i=1

(Xi < x).

1.4 Moments/Moment Generating Functions

Definition 18 (Moments). For a random variable X, the nth moment is E(Xn).

Definition 19 (Moment Generating Function). For a random variable X, the moment generating
function (MGF) is MX(t) = E(etX) for t ∈ R. If the MGF exists, then

MX(0) = 1,
dn

dtn MX(t)|t=0 = M(n)
X (t) = E(Xn).

You should sanity-check that MX(0) = 1 whenever you calculate an MGF.
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2 Practice Problems
1. Xavier and Youssef are running a 10K race. Xavier’s time (in minutes) is X ∼ N (50, 32), while

Youssef’s time is Y ∼ N (52, 42). Their times are independent.

(a) What is the probability that Youssef runs the 5K in under an hour? Answer in terms of Φ.

Solution
We can standardize Y to get that Y−52

4 ∼ N (0, 1); let Z = Y−52
4 for convenience. So

P(Y < 60) = P(
Y − 52

4
<

60 − 52
4

)

= P(Z < 2) = Φ(2).

(b) Use the empirical rule to give a simple numerical approximation for your answer to (a).

Solution
The empirical rule tells us that P(−2 < Z < 2) ≈ 0.95. In terms of Φ, this means

0.95 ≈ Φ(2)− Φ(−2).

By the symmetry of the standard normal, Φ(−2) = 1 − Φ(2), so

0.95 ≈ 2Φ(2)− 1.

Finally, rearranging to solve for Φ(2) (our answer to (a)) gives us

Φ(2) ≈ 0.95 + 1
2

= 0.975.

An alternative approach proposed in section: using the empirical rule and symmetry,
P(−2 < Z < 0) = P(0 < Z < 2) ≈ 0.475. So

P(Z < 2) = P(Z < 0) + P(0 < Z < 2)
≈ 0.5 + 0.475
= 0.975

(c) What is the probability that Xavier beats Youssef by at least a minute? Give your answer
in terms of Φ.

Solution
We want to solve for P(X + 1 < Y).

P(X + 1 < Y) = P(X − Y < −1).

Since X and Y are independent, X − Y ∼ N (50 − 52, 32 + 42), so X − Y ∼ N (−2, 52).
Let Z = (X−Y)+2

5 be a standardized r.v., with Z ∼ N (0, 1). Then

P(X − Y < −1) = P(X − Y + 2 < 1) = P(
X − Y + 2

5
<

1
5
) = Φ(

1
5
).
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(d) What is the probability that Xavier beats Youssef by at least two minutes? Give an exact
answer.

Solution
Slightly modifying the solution to (c),

P(X − Y < −2) = P(X − Y + 2 < 0) = P(
X − Y + 2

5
< 0) = Φ(0).

By the symmetry of the standard normal, Φ(0) = 0.5.

5



2. This problem is meant to develop a strong base to do Problem 5 on this week’s problem set.

Let T1, T2
i.i.d.∼ Expo(λ) be the times it takes for two radioactive particles to decay. Define

M = max(T1, T2).

(a) Find the CDF of M. Hint: use the strategy from remark 17.

Solution
For m ∈ R we can solve

P(M < m) = P(T1 < m, T2 < m) by Remark 17
= P(T1 < m)P(T2 < m) by independence

= (P(T1 < m))2 by symmetry

So the CDF is

P(M < m) =

{
(1 − e−λm)2 m > 0
0 m ≤ 0

(b) Express M as the sum of two Expo random variables, and find the rate parameters
for each of those random variables. Hint: use both memorylessness (Result 12) and the
distribution of the minimum of Expos (Result 15).

Solution
Let L be the time that the earliest particle decays; then M − L is the time between the
two particle decays. See that M = L + (M − L), so showing that L and M − L are
Expo will solve the problem.
L = min(T1, T2), so by Result 15 we have L ∼ Expo(2λ).
To find the distribution of M − L, consider that by construction we know M > L:
given the time of the earliest particle decay, we know the other particle decay must
take longer. So M − L is the remaining time for the next particle decay given the time
of the first decay. By memorylessness (see Result 12 and Biohazard 13), this means
(M − L|M > L) ∼ Expo(λ) since the particle decays are distributed Expo(λ). Since
the maximum must always be at least the minimum, M − L ∼ Expo(λ) since the
condition is implied. Memorylessness also gives us that M − L is independent of the
value of L, so M − L and L are independent.
So our solution is to write M = L + (M − L), with L ∼ Expo(2λ) and M − L ∼
Expo(λ) and L, M − L independent.
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