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1 Summary
1.1 Moment generating functions

Definition 1 (Moments). For a random variable X, the nth moment is E(Xn).

Definition 2 (Moment Generating Function). For a random variable X, the moment generating
function (MGF) is MX(t) = E(etX) for t ∈ R. If the MGF exists, then

MX(0) = 1,
dn

dtn MX(t)|t=0 = M(n)
X (t) = E(Xn).

You should sanity-check that MX(0) = 1 whenever you calculate an MGF.

Result 3 (MGF for sum of independent r.v.s). For independent random variables, X, Y with MGFs
MX, MY, then MX+Y(t) = MX(t)MY(t).

Result 4 (MGF location-scale). For random variable X and scalars a, b,

Ma+bX(t) = eat MX(bt)

since Ma+bX(t) = E(et(a+bX)) = eatE(ebtX).

Remark 5. A distribution is uniquely determined by any of the following:

1. PMF (common for discrete),

2. PDF,

3. CDF (common for continuous),

4. MGF, or

5. matching to a named distribution (common).

1.2 Poisson processes

Definition 6 (Poisson process). Consider a problem similar to Blissville/Blotchville, where T1, T2, . . . ,
represent the arrival times of busses (the amount of time from when we started waiting to when
each bus arrives). Then the bus arrival process is a Poisson process with rate λ if it satisfies the
following conditions:

1. For any interval in time of length t > 0, the number of arrivals in that interval is distributed
Pois(λt).

2. For any non-overlapping (disjoint) intervals of time, the number of bus arrivals are indepen-
dent.
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This applies for any “arrival process” where T1, T2, . . . correspond to arrival times.

h 7 (Poisson process units). Pay attention to units: λ is a rate. So if λ has units of arrivals per hour,
then t should have units of hours.

Result 8 (Inter-arrival times). In a Poisson process with rate λ, the inter-arrival times (the time
for the first arrival, T1, and the times between consecutive arrives T2 − T1, T3 − T2, . . .) are each
independently distributed

T1, T2 − T1, T3 − T2, . . . i.i.d.∼ Expo(λ).

h 9. Additionally note that T2, T3, . . . , are not exponentially distributed. In fact, they follow Gamma
distributions (which we will introduce soon): Tn ∼ Gamma(n, λ).

Result 10 (Count-time duality). Fix a time t > 0. Let Nt be the number of arrivals in the time
interval [0, t], and let Tn be the arrival time of the n-th arrival. Then

(Tn > t) = (Nt < n).

1.3 Marginal, Conditional, and Joint Distributions

Definition 11 (Marginal, conditional, and joint distributions). Consider two random variables X, Y.

Joint Marginal Conditional
Distribution (X, Y) X X|Y = y

PMF P(X = x, Y = y) P(X = x) P(X = x|Y = y)
CDF P(X ≤ x, Y ≤ y) P(X ≤ x) P(X ≤ x|Y = y)

For example, P(X|Y = y) is a marginal PMF. All of these apply if we flip X and Y, and PDFs follow
analogously from PMFs.

Result 12 (Marginalization). If we know the joint distribution of random variables (X, Y), then we
can find the marginal distribution of X (and analogously, Y) by LOTP:

P(X = x) = ∑
y

P(X = x, Y = y), X, Y discrete.

fX(x) =
∫ ∞

−∞
fX,Y(x, y), X, Y continuous.

h 13. Note that marginal distributions of X and Y are not sufficient (not enough information) to
find the joint distribution of X, Y.

Result 14 (Joint from marginal and conditional). If we know the marginal distribution of X and
the conditional distributions Y|X = x for any x, then we can find the joint distribution of (X, Y) by
factoring out our probability:

P(X = x, Y = y) = P(X = x)P(Y = y|X = x), X, Y discrete.
fX,Y(x, y) = fX(x) fY|X=x(y), X, Y continuous.
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Definition 15 (Independence of random variables). Random variables X, Y are independent if for
all x and y, any of the following hold (they imply each other, if valid):

FX,Y(x, y) = P(X ≤ x, Y ≤ Y) = P(X ≤ x)P(Y ≤ Y) = FX(x)FY(y), CDFs for any X, Y.
P(X = x, Y = y) = P(X = x)P(Y = y), PMFs for discrete X, Y.

fX,Y(x, y) = fX(x) fY(y), PDFs for continuous, X, Y.

Result 16 (2D LOTUS). Let X, Y be random variables with known joint distribution. For g :
support(X)× support(Y) → R, LOTUS extends to 2 dimensions (or analogously for any larger
dimensions) to give

E(g(X, Y)) =

{
∑x ∑y g(x, y)P(X = x, Y = y), X, Y discrete∫ ∞
−∞

∫ ∞
−∞ g(x, y) fX,Y(x, y)dxdy, X, Y continuous.

1.4 Covariance and correlation

Definition 17 (Covariance). The covariance of random variables X, Y is

Cov(X, Y) = E ([X − EX] [Y − EY])

where EX is shorthand for E(X). Equivalently,

Cov(X, Y) = E(XY)− E(X)E(Y).

Definition 18 (Correlation). The correlation of random variables X, Y is

Corr(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)

=
Cov(X, Y)

SD(X)SD(Y)
,

where SD(X) =
√

Var(X) is the standard deviation of X. Equivalently, we first standardize X and
Y, then find their covariance:

Corr(X, Y) = Cov
(

X − E(X)

SD(X)
,

Y − E(Y)
SD(Y)

)
.

Definition 19. X and Y are

• positively correlated if Corr(X, Y) > 0,

• negatively correlated if Corr(X, Y) < 0,

• uncorrelated if Corr(X, Y) = 0.

Since correlation and covariance have the same sign, this also applies for positive/negative/zero
covariance.

Result 20 (Properties of covariance: see page 327 in Blitzstein & Huang for full list). Let X, Y, W, Z
be random variables, as well as those of the form X1, X2, . . . ,.
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• If X, Y are independent, then Cov(X, Y) = 0 (so X, Y are uncorrelated).

• Cov(X, X) = Var(X).

• Var(∑i Xi) = ∑i Var(Xi) + ∑i<j 2Cov(Xi, Xj).

– This can be especially useful for finding the variance of a sum of indicators.

• Cov(X + Y, W + Z) = Cov(X, W) + Cov(X, Z) + Cov(Y, W) + Cov(Y, Z).

• Cov(aX, bY) = abCov(X, Y).

The last two properties are referred to as bilinearity.

Result 21 (Properties of correlation). Let X, Y be random variables.

• If X, Y are independent, then Corr(X, Y) = 0 (so X, Y are uncorrelated)

• −1 ≤ Corr(X, Y) ≤ 1.

h 22 (Uncorrelated does NOT imply independent). In the previous two results, we noted indepen-
dent random variables have zero correlation and zero covariance. However, the converse does not
apply: uncorrelated random variables are not necessarily independent.
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2 Practice Problems
1. (Example 6.6.1, Blitzstein & Hwang) By pattern-matching to Taylor series of the exponential

function, find the MGF of X ∼ Pois(λ). Recall that the support of X is {0, 1, 2, . . .} where, for
k in the support, the PMF is

P(X = k) =
e−λλk

k!
,

and the Taylor series for the exponential function is

ex =
∞

∑
n=0

xn

n!
.

Solution
To set up,

E(etX) =
∞

∑
k=0

etkP(X = k)

=
∞

∑
k=0

etk e−λλk

k!
.

Next see that e−λ does not depend on k, so we can pull it out of the sum.

E(etX) = e−λ
∞

∑
k=0

etk λk

k!
.

Comparing to the exponential Taylor series, we want to group terms that have a power of
k:

E(etX) = e−λ
∞

∑
k=0

(λet)k

k!

= e−λeλet
= eλ(et−1),

where we plugged in x = λet to simplify the sum with the exponential Taylor series.

2. (inspired by Problem 4 on 2023 Stat 211 Pset # 3) Suppose X1, X2, . . . , Xn
i.i.d.∼ Expo(λ). Let

X̄ = 1
n ∑n

i=1 Xi be the sample mean of the random variables.

(a) What is the joint PDF of (X1, . . . , Xn)?

Solution
Since X1, . . . , Xn are independent, they have support (R+)n and we can factor the
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PDF. For x1, . . . , xn ∈ R the PDF is

fX1,...,Xn(x1, . . . , xn) =
n

∏
i=1

fXi(xi)

=
n

∏
i=1

λe−λxi

= λne−λ ∑n
i=1 xi ,

and is 0 for other (x1, . . . , xn).

(b) Show that the conditional distribution of (X1, . . . , Xn) given X̄ = x is uniform across a
region of Rn; you can assume x > 0. To do so, use Bayes’ rule:

fX1,...,Xn|X̄=x(x1, . . . , xn) =
P(X̄ = x|X1 = x1, . . . , Xn = xn) fX1,...,Xn(x1, . . . , xn)

fX̄(x)
.

Then

• Treat the denominator is constant since fX̄(x) does not depend on x1, . . . , xn,

• Simplify fX̄|X1=x1,...,Xn=xn
(x) using logic,

• Write fX1,...,XN (x1, . . . , xn) in terms of x.

Solution
This is a classic application of Bayes’ rule since the probability of X̄ = x given
X1, . . . , Xn is easier to calculate since X̄ is a deterministic function of the Xi. So for
x1, . . . , xn ∈ R+, see that

P(X̄ = x|X1 = x1, . . . , Xn = xn) = I(
1
n

n

∑
i=1

xi = x)

fX1,...,Xn(x1, . . . , xn) = λne−λ ∑n
i=1 xi .

We can think about the first term as essentially giving our support, {(x1, . . . , xn) ∈
Rn : 1

n ∑n
i=1 xi = x} (for positive x1, . . . xn). Then for elements in our support,

fX1,...,Xn(x1, . . . , xn) = λne−λnx. Thus within the support (which is a n− 1-dimensional
hyperplane), the distribution only depends on x and λ, and thus is uniform.

3. Quincy competes in the intramural coin flipping league. The season consists of 5 regular-
season games. At the end of the regular season, the following scenarios can occur:

• Quincy wins less than 3 games, in which case their season is over.

• Quincy wins at least 3 games, in which case they qualify for the playoff bracket. Given
they qualify, they can...

– play and lose in the quarterfinal: play 1 additional game and win 0

– win the quarterfinal but lose in the semifinal: play 2 additional games and win 1.

– win the quarterfinal and semifinal but lose in the final: play 3 additional games and
win 2.
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– win the quarterfinal, semifinal, and final: play 3 additional games and win 3.

In any game that Quincy actually plays, it has a 50% probability of winning the game. Let W
be the number of games Quincy wins in its intramural coin tossing season, and let R and S be
the number of regular-season and playoff wins, respectively. This means W = R + S.

(a) Find E(W). Hint: find the distributions of R and S and use linearity.

Solution
Let R be the number of regular-season wins and S be the number of playoff wins.
Then W = R + S, so E(W) = E(R) + E(S).
See that R ∼ Bin(5, 0.5), so E(R) = 2.5. Also, by symmetry we get P(R ≥ 3) = 0.5.
Let’s now find the distribution of S. It has support {0, 1, 2, 3} with PMF as follows:

P(S = 0) = P(R < 3) + P(R ≥ 3)(0.5) =
3
4

,

P(S = 1) = P(R ≥ 3)0.5(0.5) =
1
8

,

P(S = 2) = P(R ≥ 3)0.52(0.5) =
1

16
,

P(S = 3) = P(R ≥ 3)0.53 =
1
16

.

So

E(S) =
3
4
(0) +

1
8
(1) +

1
16

(2) +
1
16

(3)

=
7
16

Thus overall,

E(W) = E(R) + E(S)

= 2.5 +
7
16

= 2.9375 =
47
16

.

(b) Write the joint PMF of (R, S):

Solution
The support of (R, S) is {(r, 0) : r ∈ {0, 1, 2}} ∪ {(r, s) : r ∈ {3, 4, 5}, s ∈ {0, 1, 2, 3}}.
So see that the PMF (in the support) is

P(R = r, S = s) =


(5

r)0.5r r ∈ {0, 1, 2}, s = 0
(5

r)0.5r(0.5) r ∈ {3, 4, 5}, s = 0
(5

r)0.5r(0.5)2 r ∈ {3, 4, 5}, s = 1
(5

r)0.5r(0.5)3 r ∈ {3, 4, 5}, s ∈ {2, 3}.
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