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1 Summary
1.1 Moment generating functions
Definition 1 (Moments). For a random variable X, the n'" moment is E(X™).

Definition 2 (Moment Generating Function). For a random variable X, the moment generating
function (MGF) is Mx(t) = E(e!X) for t € R. If the MGF exists, then

Mx(0) =1,
d" ) D
g Mx (D) li=o = My (t) = E(X").

You should sanity-check that Mx(0) = 1 whenever you calculate an MGFE.

Result 3 (MGF for sum of independent r.v.s). For independent random variables, X, Y with MGFs
Myx, My, then MX+y<t> = Mx<t>My(t).

Result 4 (MGF location-scale). For random variable X and scalars 4, b,
Mg px(t) = " Mx(bt)

since M, 4px (t) = E(e!@T0X)) = ¢ E(elX),
Remark 5. A distribution is uniquely determined by any of the following:
1. PMF (common for discrete),
2. PDF,
3. CDF (common for continuous),
4. MGEF, or

5. matching to a named distribution (common).

1.2 Poisson processes

Definition 6 (Poisson process). Consider a problem similar to Blissville/Blotchville, where Ty, T, . . .,
represent the arrival times of busses (the amount of time from when we started waiting to when
each bus arrives). Then the bus arrival process is a Poisson process with rate A if it satisfies the
following conditions:

1. For any interval in time of length ¢ > 0, the number of arrivals in that interval is distributed
Pois(At).

2. For any non-overlapping (disjoint) intervals of time, the number of bus arrivals are indepen-
dent.



This applies for any “arrival process” where Ty, T, . . . correspond to arrival times.

% 7 (Poisson process units). Pay attention to units: A is a rate. So if A has units of arrivals per hour,
then t should have units of hours.

Result 8 (Inter-arrival times). In a Poisson process with rate A, the inter-arrival times (the time
for the first arrival, T;, and the times between consecutive arrives T, — Ty, Ts — Ty, ...) are each
independently distributed

T,To— T, Ts— T, ... % Expo(A).

# 9. Additionally note that T, T3, . . ., are not exponentially distributed. In fact, they follow Gamma
distributions (which we will introduce soon): T, ~ Gamma(n, A).

Result 10 (Count-time duality). Fix a time t > 0. Let N; be the number of arrivals in the time
interval [0, t], and let T, be the arrival time of the n-th arrival. Then

(T, >t) = (Nt < n).

1.3 Marginal, Conditional, and Joint Distributions

Definition 11 (Marginal, conditional, and joint distributions). Consider two random variables X, Y.

‘ Joint ‘ Marginal ‘ Conditional
Distribution (X,Y) X XY=y
PMF P(X=x,Y=y) | P(X=x) | PX=x|Y=y)

CDF P(X<x,Y<y) | P(X<x)| P(X<x|Y=y)
For example, P(X|Y = y) is a marginal PMF. All of these apply if we flip X and Y, and PDFs follow
analogously from PMFs.

Result 12 (Marginalization). If we know the joint distribution of random variables (X,Y), then we
can find the marginal distribution of X (and analogously, Y) by LOTP:

P(X=x)= ZP(X =xY=y), X, Y discrete.
Yy
fx(x) :/ fxy(x,y), X, Y continuous.

% 13. Note that marginal distributions of X and Y are not sufficient (not enough information) to
find the joint distribution of X, Y.

Result 14 (Joint from marginal and conditional). If we know the marginal distribution of X and
the conditional distributions Y|X = x for any x, then we can find the joint distribution of (X, Y) by
factoring out our probability:
P(X=x,Y=y)=P(X=x)P(Y =y|X =x), X, Y discrete.
fxy(x,y) = fx(x)fy|X:x(y), X,Y continuous.



Definition 15 (Independence of random variables). Random variables X, Y are independent if for
all x and y, any of the following hold (they imply each other, if valid):

Fxy(x,y) =P(X<x,Y<Y)=P(X<x)P(Y<Y) = Fx(x)F(y), CDFs for any X, Y.
P(X=x,Y=y)=P(X=x)P(Y =y), PMFs for discrete X, Y.
fxy(x,y) = fx(x )fy( ), PDFs for continuous, X, Y.

Result 16 (2D LOTUS). Let X,Y be random variables with known joint distribution. For g :
support(X) x support(Y) — R, LOTUS extends to 2 dimensions (or analogously for any larger
dimensions) to give

Yo, 8 y)P(X =xY =y), XY discrete

E(g(X,Y)) = { &x 28
(s(XY)) {f_oo I 8(x,y) fxy(x,y)dxdy, X,Y continuous.

1.4 Covariance and correlation

Definition 17 (Covariance). The covariance of random variables X, Y is
Cov(X,Y) =E([X—EX][Y - EY])
where EX is shorthand for E(X). Equivalently,

Cov(X,Y) = E(XY) — E(X)E(Y).

Definition 18 (Correlation). The correlation of random variables X, Y is

Cov(X,Y)
Var(X)Var(Y)
Cov(X,Y)
~ SD(X)SD(Y)’

Corr(X,Y) =

where SD(X) = /Var(X) is the standard deviation of X. Equivalently, we first standardize X and
Y, then find their covariance:

B X—E(X) Y—E(Y)
Corr(X,Y)—Cov< SD(X) ' SD(Y) )

Definition 19. X and Y are
* positively correlated if Corr(X,Y) > 0,
* negatively correlated if Corr(X,Y) <0,
* uncorrelated if Corr(X,Y) = 0.

Since correlation and covariance have the same sign, this also applies for positive/negative/zero
covariance.

Result 20 (Properties of covariance: see page 327 in Blitzstein & Huang for full list). Let X, Y, W, Z
be random variables, as well as those of the form X;, X, ...,.



If X, Y are independent, then Cov(X,Y) = 0 (so X, Y are uncorrelated).
Cov(X, X) = Var(X).
Var(Zi Xi) = Zi Var(Xi) + Zi<]‘ ZCOV(XZ', X])

— This can be especially useful for finding the variance of a sum of indicators.
Cov(X+Y,W+Z) =Cov(X, W)+ Cov(X,Z)+ Cov(Y,W) + Cov(Y, Z).
Cov(aX,bY) = abCov(X,Y).

The last two properties are referred to as bilinearity.

Result 21 (Properties of correlation). Let X, Y be random variables.
e If X, Y are independent, then Corr(X,Y) = 0 (so X, Y are uncorrelated)
e —1<Corr(X,Y) <1

# 22 (Uncorrelated does NOT imply independent). In the previous two results, we noted indepen-
dent random variables have zero correlation and zero covariance. However, the converse does not
apply: uncorrelated random variables are not necessarily independent.



2 Practice Problems

1. (Example 6.6.1, Blitzstein & Hwang) By pattern-matching to Taylor series of the exponential
function, find the MGF of X ~ Pois(A). Recall that the support of X is {0,1,2, ...} where, for
k in the support, the PMF is

e~ MK

n=0
Solution
To set up,
E(e™) =Y e*P(X =k)
k=0
k=0 k!

Next see that e~ does not depend on k, so we can pull it out of the sum.

E(etX) _ e—/\ ietk/\—k
N e

Comparing to the exponential Taylor series, we want to group terms that have a power of

k:
Xy _ A\ (Ae)k
E(e*)=e")’ =
k=0
_ efAe)\e’ _ e)\(e’fl)’

where we plugged in x = Ae! to simplify the sum with the exponential Taylor series.
2. (inspired by Problem 4 on 2023 Stat 211 Pset # 3) Suppose X1, X2, ..., Xy "% Expo(A). Let

X = % Y.i.1 Xi be the sample mean of the random variables.

(a) What is the joint PDF of (X, ..., Xy)?

Solution
Since Xj, ..., X, are independent, they have support (]R*)” and we can factor the



PDE. For x1,...,x; € R the PDF is
n
fxi % (X1, ) = T T ()
i=1
n
= H/\e’)‘x"
i=1
_ Anef/\ Y xil
and is 0 for other (xq,...,x,).

(b) Show that the conditional distribution of (Xj, ..., X,) given X = x is uniform across a
region of R"; you can assume x > 0. To do so, use Bayes’ rule:

P(X = X|X1 = X1,.. .,Xn = Xn>fxlw.,xn(xl,. . .,xn)
fx(x)

fxl,...,xnp‘(:x(xlr e Xp) =

Then
e Treat the denominator is constant since f5(x) does not depend on x7, ..., xy,
* Simplify f5|x,-x,,... x,—x, (X) using logic,
e Write fx,,.xy(X1,...,%,) in terms of x.
Solution

This is a classic application of Bayes’ rule since the probability of X = x given
X1,...,X, is easier to calculate since X is a deterministic function of the X;. So for

X1,...,%X; € RT, see that
_ 12
P(X = X|X1 =x1,...,Xn = xn) = I(E Exi = .X')
i=1
fxy o x, (X1, 00, %) = Ale MLz i,

We can think about the first term as essentially giving our support, {(x1,...,x,) €
R" : Ly x; = x} (for positive x1,...x,). Then for elements in our support,

1=

fxp.x,(x1, ..., xn) = A"e~*. Thus within the support (which is a n — 1-dimensional
hyperplane), the distribution only depends on x and A, and thus is uniform.

3. Quincy competes in the intramural coin flipping league. The season consists of 5 regular-
season games. At the end of the regular season, the following scenarios can occur:
* Quincy wins less than 3 games, in which case their season is over.

* Quincy wins at least 3 games, in which case they qualify for the playoff bracket. Given
they qualify, they can...

- play and lose in the quarterfinal: play 1 additional game and win 0
- win the quarterfinal but lose in the semifinal: play 2 additional games and win 1.

- win the quarterfinal and semifinal but lose in the final: play 3 additional games and
win 2.



- win the quarterfinal, semifinal, and final: play 3 additional games and win 3.

In any game that Quincy actually plays, it has a 50% probability of winning the game. Let W
be the number of games Quincy wins in its intramural coin tossing season, and let R and S be
the number of regular-season and playoff wins, respectively. This means W = R + S.

(a) Find E(W). Hint: find the distributions of R and S and use linearity.

Solution

Let R be the number of regular-season wins and S be the number of playoff wins.
Then W = R+ S,s0 E(W) = E(R) + E(S).

See that R ~ Bin(5,0.5), so E(R) = 2.5. Also, by symmetry we get P(R > 3) = 0.5.
Let’s now find the distribution of S. It has support {0, 1,2,3} with PMF as follows:

HS:@:HR<$+HRZ@@®:%
Pw:1y:mRz3mﬂ0@:é,
szzy:mRz3m§m5%=%,
mszazpmz3m§={%
So
E(S) = 5(0) + 5(1) + 7(2) +7:(3)

Thus overall,

_o254+
* 16

47
= 2.9375 = —.
16

(b) Write the joint PMF of (R, S):

Solution
The support of (R,S)is {(r,0) : r € {0,1,2}} U{(r,s) : r € {3,4,5},5s € {0,1,2,3} }.
So see that the PMF (in the support) is

0.5" re{0,1,2},5 =0
057(05) re{3,4,5},s=0
057(05)% re {3,4,5},s=1
0.57(05)% re {3,4,5},s € {2,3}.
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