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1 Summary
1.1 Multinomial
We first generalize the notion of Bernoulli trials to many categories; this vocabulary for “categorical
trials” is not standard/necessary for the class, just introduced for to help define the Multino-
mial.

Definition 1 (Categorical trials). Consider categorical trials, where the outcome of a trial falls into
one of k categories (e.g., the roll of a die has 6 categories, the flip of a coin has 2, etc.). Let p ∈ Rk

be a probability vector (where each entry is in [0, 1] and the entries add up to p), where pi is the
probability that the outcome falls into the ith category.

Story 2 (Multinomial). Suppose we run n independent and identically distributed (i.i.d.) categorical
trials with k categories and probability vector p. Let X (a k-dimensional random vector) count the
number of trials that fell into each category. Then X is distributed Multinomial: X ∼ Multk(n, p).

Result 3 (Marginal). For X ∼ Multk(n, p), Xj ∼ Bin(n, pj).

Result 4 (Conditioning). For X ∼ Multk(n, p),

(X2, . . . , Xn)|X1 = x1 ∼ Multk−1(n − x1,
(

p2

1 − p1
, . . . ,

pn

1 − p1

)
).

Result 5 (Lumping). Suppose X ∼ Multk(n, p). Then we can group (lump) categories in any way
to get a new Multinomial random variable by adding up the associated probabilities. For example,
if (X1, X2, X3, X4, X5) ∼ Mult5 (n, (p1, p2, p3, p4, p5)), then some valid examples are

(X1 + X4, X2, X3 + X5) ∼ Mult3 (n, (p1 + p4, p2, p3 + p5)) ,
(X1 + X2, X3, X4, X5) ∼ Mult4 (n, (p1 + p2, p3, p4, p5)) .

Result 6 (Covariance). For X ∼ Multk(n, p), Cov(Xi, Xj) = −npi pj.

Result 7 (Chicken-Egg extension, Joe might’ve called this Fish-Egg). Suppose N ∼ Pois(λ) and
X|N = n ∼ Multk(n, p) where k, p don’t depend on n. Then for j = 1, 2, . . . , k,

Xj ∼ Pois(λpj).

1.2 Multivariate Normal
Definition 8 (Multivariate Normal (MVN)). Suppose X is a k-dimensional random vector. Then X
follows Multivariate Normal (MVN) distribution if for any constants t1, . . . , tk ∈ R,

t1X1 + · · ·+ tkXk

is Normal (where 0 is consider to follow a degenerate Normal distribution).
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Definition 9 (Bivariate Normal (BVN)). X follows a Bivariate Normal (BVN) distribution if it is a
2-dimensional MVN.

Result 10 (Uncorrelated MVN implies independence). Suppose (X, Y) is bivariate normal with
Cov(X, Y) = 0 (i.e., X and Y are uncorrelated). Then X and Y are independent.
More generally, if X and Y (potentially vectors) are components of the same MVN and Xi, Yj are
uncorrelated for any i, j, then X and Y are independent.

h 11. Please note the specific conditions under which Result 10 holds. It is always true that
independent random variables are uncorrelated, but the converse is rarely a general truth. For
example, two uncorrelated Normal random variables are not necessarily independent; we could
only make that statement if we knew they were components of the same MVN.

Result 12 (Independence of sum and difference). Suppose X ∼ N (µ1, σ2) and Y ∼ N (µ2, σ2) are
independent. Then X + Y and X − Y are also independent.

Result 13 (Concatenation). Suppose X = (X1, . . . , Xn) and Y = (Y1, . . . Ym) are both Multivariate
Normal with X, Y independent of each other. Then (X1, . . . , Xn, Y1, . . . , Ym) is also Multivariate
Normal.

Result 14 (Subvector). Suppose (X, Y, Z) is Multivariate Normal. Then (X, Y) is also Multivariate
Normal. In general, any subvector of a Multivariate Normal still follows a Multivariate Normal
distribution.
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2 Practice Problems
1. Suppose

(X1, X2, X3, X4, X5) ∼ Mult5(n, (p1, p2, p3, p4, p5)).

(a) What is the distribution of X1 + X3|X2 + X4 = x?

Solution
By Multinomial lumping (Result 5)

(X1 + X3, X2 + X4, X5) ∼ Mult3(n, (p1 + p3, p2 + p4, p5)).

By Multinomial conditioning (Result 4),

(X1 + X3, X5)|X2 + X4 = x ∼ Mult2(n − x,
(

p1 + p3

1 − p2 − p4
,

p5

1 − p2 − p4

)
)

By the Multinomial marginal (Result 3),

X1 + X3|X2 + X4 = x ∼ Bin
(

n − x,
p1 + p3

1 − p2 − p4

)
(b) What about the distribution of X1 + X3|X2 + X4 + X5 = x? Hint: should require little-to-no

math.

Solution
By definition, X1 + X2 + X3 + X4 + X5 = n. So P(X1 + X3 = n − x|X2 + X4 + X5 =
x) = 1.

2. (MVN operations)

(a) Suppose (X, Y, Z) is distributed Multivariate Normal. Show that (X +Y, X + Z) is MVN.

Solution

t1(X + Y) + t2(X + Z) = (t1 + t2)X + t1Y + t2Z

which is Normal since (X, Y, Z) is MVN.
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(b) Suppose (X − Y, X, Z) is MVN. Show that (X, Y) is Bivariate Normal.

Solution

t1X + t2Y = −t2(X − Y) + (t1 + t2)X + 0Z,

which is Normal since (X − Y, X, Z) is MVN.

(c) (Example 7.5.2 in Blitzstein & Hwang) Suppose X ∼ N (0, 1) and S is a random sign, i.e.,

P(S = s) =

{
1/2 s ∈ {−1, 1},
0 else.

Take for granted that SX ∼ N (0, 1). Why is (X, SX) not Bivariate Normal? Hint: show
that X + SX is not a solely continuous random variable: i.e., P(X + SX = x) > 0 for some
x ∈ R.

Solution
See that

P(X + SX = 0) = P(S = −1) = 1/2,

so X + SX is not continuous, and thus is not Normal (since the Normal is continuous).
(X, SX) cannot be Bivariate Normal since X + SX is a linear combination of its
elements that is not Normal.
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3. (Example 7.5.10, Blitzstein & Huang) Suppose X, Y i.i.d.∼ N (0, 1) and ρ ∈ (0, 1). Let Z = aX + bY.
Find the values of a and b (real valued constants) that give

Z ∼ N (0, 1),
Cov(X, Z) = ρ.

Hint: calculate the variance of Z and the covariance between Z and X in terms of a and b. Set them
equal to the desired values.

Solution
By the independence of X and Y,

Var(Z) = a2Var(X) + b2Var(Y) = a2 + b2.

So we need a2 + b2 = 1. Then the covariance is

Cov(X, Z) = Cov(X, aX + bY) = aVar(X) + bCov(X, Y) = a.

So a = ρ. That makes b =
√

1 − ρ2.
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