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1 Summary
1.1 Transformations

Definition 1 (Transformation). A transformation of a random variable X is any (deterministic)
function of that random variable g(X).

Example 2 (Expo scaling). Suppose X ∼ Expo(λ), and define g(x) = λx. Then λX ∼ Expo(1).

Example 3 (Uniform location-scale). Suppose U ∼ Unif(0, 1) and define g(x) = (b − a)u + a for
constants a, b. Then g(U) = (b − a)U + a ∼ Unif(a, b).

Result 4 (LOTUS). Recall the Law of the Unconscious Statistician (LOTUS) to find the expectation
of a transformed random variable g(X) in terms of the PDF/PMF of X and function g.

E(X) =

{
∑x∈S g(x)P(X = x) X discrete,∫

S g(x) fX(x)dx X continuous.

Result 5 (CDF of transformed r.v.). For any random variable X and strictly increasing function g, the
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CDF of g(X) in terms of the CDF of X is

Fg(X)(y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y)).

Result 6 (PMF of discrete transformed r.v.). For discrete random variable X and any function g, the
PMF of g(X) in terms of the PMF of X is

P(g(X) = y) = ∑
x:g(x)=y

P(X = x)

by LOTP.

Result 7 (Change of variables, PDF of continuous transformed r.v.). For continuous random variable
X and differentiable, strictly monotone function g, the PDF of g(X) in terms of the PDF of X is

fg(X)(y) = fX(g−1(y))
∣∣∣∣dg−1(y)

dy

∣∣∣∣ .

A strictly monotone function is either strictly increasing or strictly decreasing.

1.2 Gamma and Beta distributions

1.2.1 Distribution definitions and properties

Definition 8 (Beta distribution). A random variable B ∼ Beta(a, b) that follows a Beta distribution
has support (0, 1) with the following PDF on the support:

fB(x) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1 − x)b−1,

where the integrating constant Γ(a+b)
Γ(a)Γ(b) uses Gamma functions as defined in Definition 9. Once you

identify that the PDF of a random variable exclusively consists of a product of powers of x and
(1 − x) with support (0, 1), you can uniquely identify it as a Beta distribution with parameters
without having to wrangle the constants.

Definition 9 (Gamma function). The gamma function Γ is defined for a > 0 by

Γ(a) =
∫ ∞

0
xae−x 1

x
dx.

This does not have a general closed form and you will never have to solve it. Here are the handy
properties:

• Γ(a + 1) = aΓ(a).

• If n is a positive integer, Γ(n) = (n − 1)!.

• Γ(1/2) =
√

π.

Definition 10 (Gamma distribution). A random variable that follows a Gamma distribution is
denoted G ∼ Gamma(a, λ) with parameters a, λ > 0.

Result 11 (Gamma scaling). If G ∼ Gamma(a, λ), then λG ∼ Gamma(a, 1).
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1.2.2 Distribution connections and stories

Result 12 (Beta-Uniform equivalence). The Beta(1, 1) and Unif(0, 1) distributions are equivalent.

Result 13 (Beta-Uniform order statistics). Suppose U1, . . . , Un
i.i.d∼ Unif(0, 1). Then the k-th order

statistic (the k-th smallest of the {Ui}i=1,...,n, as in Definition 19) follows the distribution U(k) ∼
Beta(k, n − k + 1). Note that Result 12 is consistent with this fact.

Result 14 (Beta-Binomial conjugacy). Let p ∼ Beta(a, b) represent our prior belief about a probability.
Suppose we observe X|p ∼ Bin(n, p), where n is constant but p is random. Then the posterior
distribution of p (via Bayes’ rule) is p|X = k ∼ Bin(a + k, b + n − k).

Result 15 (Bayes’ billiards). For integers k, n with 0 ≤ k ≤ n,∫ 1

0

(
n
k

)
xk(1 − x)n−kdx =

1
n + 1

.

Result 16 (Bank-Post Office story/Beta-Gamma connection). Suppose X ∼ Gamma(a, λ) and
Y ∼ Gamma(b, λ) with X, Y independent. Define T = X + Y and W = X

X+Y . Then the following
results hold:

1. T ∼ Gamma(a + b, λ),

2. W ∼ Beta(a, b), and

3. T and W are independent.

Result 17 (Expo-Gamma). For X1, . . . , Xn
i.i.d.∼ Expo(λ), X1 + · · · Xn ∼ Gamma(n, λ). Note that this

means Expo(λ) and Gamma(1, λ) are the same distribution.

Result 18 (Poisson process-Gamma). Suppose Tk is the k-th arrival time in a Poisson process with
rate λ. Then by Result 17, Tk ∼ Gamma(k, λ).

1.3 Order statistics

Definition 19 (Order Statistics). The order statistics of random variables X1, . . . , Xn are the result of
sorting them in increasing order, denoted X(1), . . . , X(n). For example, X(1) = min{X1, . . . , Xn} and
X(n) = min{X1, . . . , Xn}. The k-th order statistic, notated X(k), is the k-th smallest value among
X(1), . . . , X(n).

h 20. Order statistics are always going to be dependent by nature: If you know X(1), then you
know X(2) ≥ X(1).

Result 21 (CDF of order statistic). For X1, . . . , Xn i.i.d. random variables with CDF F,

P(X(j) ≤ x) =
n

∑
k=j

(
n
k

)
F(x)k(1 − F(x))n−k.

Result 22 (PDF of order statistic). For X1, . . . , Xn i.i.d. continuous random variables with PDF f and
CDF F,

fX(j)(x) = n
(

n − 1
j − 1

)
f (x)F(x)j−1(1 − F(x))n−j.
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1.4 Conditional expectation

Definition 23 (Conditional expectation given event). The conditional expectation of a random
variable X given an event A is

E(X|A) =

{
∑x P(X = x|A) X discrete,∫ ∞
−∞ x f (x|A)dx X continuous.

Definition 24 (Law of total expectation). Suppose A1, A2, . . . are events partitioning the sample
space. Then the law of total expectation (LOTE) states that

E(X) = ∑
j

E(X|Aj)P(Aj).
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2 Practice Problems
1. Suppose Shawn attempts a free throw, p is the probability that they make it. Let p ∼ Unif(0, 1)

be our prior distribution for that probability. Shawn attempts 5 free throws and makes 4 of
them. Assuming that each free throw is i.i.d. (they have an equal and independent probability
p of making each), what is the posterior distribution of p?

2. Suppose X ∼ Beta(2, 2). Find E(X3) by pattern-matching the LOTUS integral to a Beta PDF.
Recall that for x ∈ (0, 1), a Beta(a, b) r.v. has PDF

Γ(a + b)
Γ(a)Γ(b)

xa−1(1 − x)b−1.

Fully simplify your answer (i.e., no Gamma functions left over, use the properties from
Definition 9 if needed).
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3. (inspired by HW 5.3) Suppose George has N ∼ Pois(λ) children in his lifetime, and his i-
th child has Gi ∼ Pois(λ) children themselves, and G1, . . . , GN , N are all independent. By
pattern-matching to a Poisson expectation, find the expected number of grandchildren that
George has.
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