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1 Summary

1.1 Transformations

Definition 1 (Transformation). A transformation of a random variable X is any (deterministic)
function of that random variable g(X).

Example 2 (Expo scaling). Suppose X ~ Expo(A), and define g(x) = Ax. Then AX ~ Expo(1).

Example 3 (Uniform location-scale). Suppose U ~ Unif(0,1) and define g(x) = (b — a)u + a for
constants a,b. Then ¢(U) = (b —a)U + a ~ Unif(a, b).

Result 4 (LOTUS). Recall the Law of the Unconscious Statistician (LOTUS) to find the expectation
of a transformed random variable g(X) in terms of the PDF/PMF of X and function g.

E(X) = {ers g(x)P(X =x) X discrete,

fs g(x) fx(x)dx X continuous.

Result 5 (CDF of transformed r.v.). For any random variable X and strictly increasing function g, the
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CDF of g(X) in terms of the CDF of X is

Fox)(y) = P(g(X) <y) =P(X < ¢ '(y)) = Fx(§'(v))-

Result 6 (PMF of discrete transformed r.v.). For discrete random variable X and any function g, the
PMEF of ¢(X) in terms of the PMF of X is

by LOTP.

Result 7 (Change of variables, PDF of continuous transformed r.v.). For continuous random variable
X and differentiable, strictly monotone function g, the PDF of ¢(X) in terms of the PDF of X is

-1
fro®) = flg ') \”’gdy‘y)\ |

A strictly monotone function is either strictly increasing or strictly decreasing.

1.2 Gamma and Beta distributions

1.2.1 Distribution definitions and properties

Definition 8 (Beta distribution). A random variable B ~ Beta(a, b) that follows a Beta distribution
has support (0,1) with the following PDF on the support:

(a+b) a—1

fo(x) = W (1-x)",

where the integrating constant % uses Gamma functions as defined in Definition 9. Once you

identify that the PDF of a random variable exclusively consists of a product of powers of x and
(1 — x) with support (0,1), you can uniquely identify it as a Beta distribution with parameters
without having to wrangle the constants.

Definition 9 (Gamma function). The gamma function I' is defined for a > 0 by
* a,—X 1

I'(a) = / x'e * —dx.
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This does not have a general closed form and you will never have to solve it. Here are the handy
properties:

e T'(a+1) =al(a).
e If nis a positive integer, I'(n) = (n —1)!.
e T(1/2) =/m.

Definition 10 (Gamma distribution). A random variable that follows a Gamma distribution is
denoted G ~ Gamma(a, A) with parameters a, A > 0.

Result 11 (Gamma scaling). If G ~ Gamma(a, A), then AG ~ Gamma(a, 1).



1.2.2 Distribution connections and stories

Result 12 (Beta-Uniform equivalence). The Beta(1,1) and Unif(0, 1) distributions are equivalent.
Result 13 (Beta-Uniform order statistics). Suppose Uj, ..., U, iLd Unif(0,1). Then the k-th order
statistic (the k-th smallest of the {U;},—1 . ,, as in Definition 19) follows the distribution Uy ~
Beta(k,n — k + 1). Note that Result 12 is consistent with this fact.

Result 14 (Beta-Binomial conjugacy). Let p ~ Beta(a, b) represent our prior belief about a probability.
Suppose we observe X|p ~ Bin(n, p), where n is constant but p is random. Then the posterior
distribution of p (via Bayes’ rule) is p|X = k ~ Bin(a + k,b +n — k).

Result 15 (Bayes’ billiards). For integers k,n with0 <k <,

AW nkg _ 1
./0 <k>x(1—x) dx—n+1.

Result 16 (Bank-Post Office story/Beta-Gamma connection). Suppose X ~ Gamma(a, A) and
Y ~ Gamma(b, A) with X, Y independent. Define T = X +Y and W = % Then the following
results hold:

1. T ~ Gamma(a + b, A),
2. W ~ Beta(a,b), and

3. T and W are independent.
Result 17 (Expo-Gamma). For X3, ..., X, 1. Expo(A), X1 + - - - X, ~ Gamma(n, A). Note that this
means Expo(A) and Gamma(1, A) are the same distribution.

Result 18 (Poisson process-Gamma). Suppose Ty is the k-th arrival time in a Poisson process with
rate A. Then by Result 17, T ~ Gamma(k, A).

1.3 Order statistics

Definition 19 (Order Statistics). The order statistics of random variables Xj, . .., X, are the result of
sorting them in increasing order, denoted X(l), e, X(n). For example, X(l) = min{Xj,..., X, } and
X(ny = min{Xy,..., Xy }. The k-th order statistic, notated X, is the k-th smallest value among
X(l)/ . /X(n)-

% 20. Order statistics are always going to be dependent by nature: If you know X|;), then you
know X(z) Z X(l)

Result 21 (CDF of order statistic). For X3, ..., X, i.i.d. random variables with CDF F,

P(X(]) < x) = i (Z)F(x)k(l — F(x))”—k'

=

Result 22 (PDF of order statistic). For X, ..., X, ii.d. continuous random variables with PDF f and
CDF F,

iy @) = () 1) ARG (0= FG)



1.4 Conditional expectation

Definition 23 (Conditional expectation given event). The conditional expectation of a random
variable X given an event A is

Y. P(X=x|A) Xdiscrete,
ffooo xf(x|A)dx X continuous.

E(X|A) = {

Definition 24 (Law of total expectation). Suppose A1, Ay, ... are events partitioning the sample
space. Then the law of total expectation (LOTE) states that

E(X) = ZE(X\A]-)P(Aj).
]



2 Practice Problems

1. Suppose Shawn attempts a free throw, p is the probability that they make it. Let p ~ Unif(0,1)
be our prior distribution for that probability. Shawn attempts 5 free throws and makes 4 of
them. Assuming that each free throw is i.i.d. (they have an equal and independent probability
p of making each), what is the posterior distribution of p?

2. Suppose X ~ Beta(2,2). Find E(X3) by pattern-matching the LOTUS integral to a Beta PDF.
Recall that for x € (0,1), a Beta(a, b) r.v. has PDF

I'(a+b)

Mo G0

Fully simplify your answer (i.e., no Gamma functions left over, use the properties from
Definition 9 if needed).



3. (inspired by HW 5.3) Suppose George has N ~ Pois(A) children in his lifetime, and his i-
th child has G; ~ Pois(A) children themselves, and Gy, ..., Gy, N are all independent. By
pattern-matching to a Poisson expectation, find the expected number of grandchildren that

George has.
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